Temperature-sensitive liposomes for doxorubicin delivery under MRI guidance. 2010

Mariska de Smet, and Sander Langereis, and Sandra van den Bosch, and Holger Grüll
Eindhoven University of Technology, Dept. of Biomedical NMR, Eindhoven, The Netherlands.

Local drug delivery of doxorubicin holds promise to improve the therapeutic efficacy and to reduce toxicity profiles. Here, we investigated the release of doxorubicin and [Gd(HPDO3A)(H(2)O)] from different temperature-sensitive liposomes for applications in temperature-induced drug delivery under magnetic resonance image guidance. In particular, two temperature-sensitive systems composed of DPPC:MPPC:DPPE-PEG2000 (low temperature-sensitive liposomes, LTSL) and DPPC:HSPC:cholesterol:DPPE-PEG2000 (traditional temperature-sensitive liposomes, TTSL) were investigated. The co-encapsulation of [Gd(HPDO3A)(H(2)O)], a clinically approved MRI contrast agent, did not influence the encapsulation and release of doxorubicin. The LTSL system showed a higher leakage of doxorubicin at 37 degrees C, but a faster release of doxorubicin at 42 degrees C compared to the TTSL system. Furthermore, the rapid release of both doxorubicin and the MRI contrast agent from the liposomes occurred near the melting phase transition temperature, making it possible to image the release of doxorubicin using MRI.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D009942 Organometallic Compounds A class of compounds of the type R-M, where a C atom is joined directly to any other element except H, C, N, O, F, Cl, Br, I, or At. (Grant & Hackh's Chemical Dictionary, 5th ed) Metallo-Organic Compound,Metallo-Organic Compounds,Metalloorganic Compound,Organometallic Compound,Metalloorganic Compounds,Compound, Metallo-Organic,Compound, Metalloorganic,Compound, Organometallic,Compounds, Metallo-Organic,Compounds, Metalloorganic,Compounds, Organometallic,Metallo Organic Compound,Metallo Organic Compounds
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002626 Chemistry, Pharmaceutical Chemistry dealing with the composition and preparation of agents having PHARMACOLOGIC ACTIONS or diagnostic use. Medicinal Chemistry,Chemistry, Pharmaceutic,Pharmaceutic Chemistry,Pharmaceutical Chemistry,Chemistry, Medicinal
D003287 Contrast Media Substances used to allow enhanced visualization of tissues. Radiopaque Media,Contrast Agent,Contrast Agents,Contrast Material,Contrast Materials,Radiocontrast Agent,Radiocontrast Agents,Radiocontrast Media,Agent, Contrast,Agent, Radiocontrast,Agents, Contrast,Agents, Radiocontrast,Material, Contrast,Materials, Contrast,Media, Contrast,Media, Radiocontrast,Media, Radiopaque
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell

Related Publications

Mariska de Smet, and Sander Langereis, and Sandra van den Bosch, and Holger Grüll
February 2008, Journal of magnetic resonance imaging : JMRI,
Mariska de Smet, and Sander Langereis, and Sandra van den Bosch, and Holger Grüll
May 2022, International journal of pharmaceutics,
Mariska de Smet, and Sander Langereis, and Sandra van den Bosch, and Holger Grüll
December 2016, Journal of liposome research,
Mariska de Smet, and Sander Langereis, and Sandra van den Bosch, and Holger Grüll
July 2012, Journal of controlled release : official journal of the Controlled Release Society,
Mariska de Smet, and Sander Langereis, and Sandra van den Bosch, and Holger Grüll
January 2022, Nanotheranostics,
Mariska de Smet, and Sander Langereis, and Sandra van den Bosch, and Holger Grüll
January 2004, Methods in enzymology,
Mariska de Smet, and Sander Langereis, and Sandra van den Bosch, and Holger Grüll
November 2018, Drug delivery,
Mariska de Smet, and Sander Langereis, and Sandra van den Bosch, and Holger Grüll
September 2015, Journal of controlled release : official journal of the Controlled Release Society,
Mariska de Smet, and Sander Langereis, and Sandra van den Bosch, and Holger Grüll
January 2015, PloS one,
Mariska de Smet, and Sander Langereis, and Sandra van den Bosch, and Holger Grüll
December 1988, Pharmaceutisch weekblad. Scientific edition,
Copied contents to your clipboard!