Incorporation of double-walled microspheres into polymer nerve guides for the sustained delivery of glial cell line-derived neurotrophic factor. 2010

Lauren E Kokai, and Amir M Ghaznavi, and Kacey G Marra
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.

The purpose of this study was to develop a biodegradable polymer nerve guide that locally delivers bioactive neurotrophic factors in physiologically relevant concentrations for the period required by transected peripheral nerves to cross from the proximal to distal nerve stump. Delivery of a neurotrophic factor may enhance nerve regeneration and could potentially be used to overcome the current limitations in nerve repair across large defects. Glial Cell Line-Derived Neurotrophic Factor (GDNF) is a known promoter of axonal elongation and branching and has shown promising pre-clinical results in analysis of nerve regeneration with nerve guides. In addition, GDNF has been shown to promote Schwann cell proliferation and migration. In this study we have created a double-walled microsphere delivery system for bioactive GDNF with a sustained release profile>50 days in vitro. Microspheres were incorporated within degradable poly(caprolactone) nerve guides in a reproducible distribution. Implantation of nerve guides across a 1.5 cm defect in a rat sciatic nerve gap resulted in an increase in tissue integration in both the proximal and distal segments of the lumen of the nerve guide after 6 weeks. In addition, transverse sections of the distal region of the explanted guides showed the presence of Schwann cells while none were detectable in negative control guides. Migration of Schwann cells to double-walled microspheres indicated that bioactive GDNF was encapsulated and delivered to the internal environment of the nerve guide. Because GDNF increased tissue formation within the nerve guide lumen and also promoted the migration and proliferation of Schwann cells, the nerve guides presented within this study show promise toward the development of an off-the-shelf product alternative that promotes nerve regeneration beyond that capable with currently available nerve guides.

UI MeSH Term Description Entries
D008297 Male Males
D008422 Materials Testing The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility. Biocompatibility Testing,Biocompatible Materials Testing,Hemocompatibility Testing,Testing, Biocompatible Materials,Testing, Hemocompatible Materials,Hemocompatibility Testings,Hemocompatible Materials Testing,Materials Testing, Biocompatible,Materials Testing, Hemocompatible,Testing, Biocompatibility,Testing, Hemocompatibility,Testing, Materials,Testings, Biocompatibility
D008863 Microspheres Small uniformly-sized spherical particles, of micrometer dimensions, frequently labeled with radioisotopes or various reagents acting as tags or markers. Latex Beads,Latex Particles,Latex Spheres,Microbeads,Bead, Latex,Beads, Latex,Latex Bead,Latex Particle,Latex Sphere,Microbead,Microsphere,Particle, Latex,Particles, Latex,Sphere, Latex,Spheres, Latex
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D011091 Polyesters Polymers of organic acids and alcohols, with ester linkages--usually polyethylene terephthalate; can be cured into hard plastic, films or tapes, or fibers which can be woven into fabrics, meshes or velours. Polyester
D011917 Rats, Inbred Lew An inbred strain of rat that is used in BIOMEDICAL RESEARCH. Rats, Inbred Lewis,Rats, Lew,Inbred Lew Rat,Inbred Lew Rats,Inbred Lewis Rats,Lew Rat,Lew Rat, Inbred,Lew Rats,Lew Rats, Inbred,Lewis Rats, Inbred,Rat, Inbred Lew,Rat, Lew
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001672 Biocompatible Materials Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function. Biomaterials,Bioartificial Materials,Hemocompatible Materials,Bioartificial Material,Biocompatible Material,Biomaterial,Hemocompatible Material,Material, Bioartificial,Material, Biocompatible,Material, Hemocompatible
D012584 Sciatic Nerve A nerve which originates in the lumbar and sacral spinal cord (L4 to S3) and supplies motor and sensory innervation to the lower extremity. The sciatic nerve, which is the main continuation of the sacral plexus, is the largest nerve in the body. It has two major branches, the TIBIAL NERVE and the PERONEAL NERVE. Nerve, Sciatic,Nerves, Sciatic,Sciatic Nerves

Related Publications

Lauren E Kokai, and Amir M Ghaznavi, and Kacey G Marra
August 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V,
Lauren E Kokai, and Amir M Ghaznavi, and Kacey G Marra
December 2010, The Journal of hand surgery,
Lauren E Kokai, and Amir M Ghaznavi, and Kacey G Marra
January 2016, Acta biomaterialia,
Lauren E Kokai, and Amir M Ghaznavi, and Kacey G Marra
March 2018, Acta biomaterialia,
Lauren E Kokai, and Amir M Ghaznavi, and Kacey G Marra
May 2009, The Laryngoscope,
Lauren E Kokai, and Amir M Ghaznavi, and Kacey G Marra
November 1999, Annals of the New York Academy of Sciences,
Lauren E Kokai, and Amir M Ghaznavi, and Kacey G Marra
April 2014, Drug delivery and translational research,
Lauren E Kokai, and Amir M Ghaznavi, and Kacey G Marra
July 2007, Journal of neurosurgery,
Lauren E Kokai, and Amir M Ghaznavi, and Kacey G Marra
January 2003, Annals of neurology,
Lauren E Kokai, and Amir M Ghaznavi, and Kacey G Marra
December 1994, Neuroreport,
Copied contents to your clipboard!