The killing effect of 4-S-cysteaminylphenol, a newly synthesised melanin precursor, on B16 melanoma cell lines. 1991

I Yamada, and S Seki, and S Ito, and S Suzuki, and O Matsubara, and T Kasuga
Department of Radiology, School of Medicine, Tokyo Medical and Dental University, Japan.

We have examined the killing effect of 4-S-cysteaminylphenol (4-S-CAP), a newly synthesised melanin precursor, on B16 melanoma cell lines possessing different melanin-producing activities and found it to be particularly effective in heavily melanised melanoma cells, but less so in moderately melanised melanoma cells, and having no effect on amelanotic melanoma cells and nonmelanoma cells. Thus, it was found that the killing effect of 4-S-CAP is highly dependent upon the synthesis of melanin and tyrosinase in melanoma cells, suggesting that 4-S-CAP may become toxic to melanoma cells only after oxidation by tyrosinase. The killing activity of 4-S-CAP also was found to be associated with a profound inhibition of the thymidine incorporation in pigmented melanoma cells, as compared to the uridine and leucine incorporation. Further, the inhibition of DNA synthesis was most pronounced in heavily melanised melanoma cells, less so in moderately melanised melanoma cells, and not seen in amelanotic melanoma cells. As a possible mechanism that might account for this action, it may be that 4-S-CAP is oxidised by tyrosinase to the o-quinone form via the catechol derivative and that some of the quinones then conjugate with sulfhydryl enzymes including DNA polymerase, thus exerting a killing activity for pigmented melanoma cells. Thus, 4-S-CAP appears to provide a new, effective cytotoxic agent for rational chemotherapy of malignant melanomas.

UI MeSH Term Description Entries
D008543 Melanins Insoluble polymers of TYROSINE derivatives found in and causing darkness in skin (SKIN PIGMENTATION), hair, and feathers providing protection against SUNBURN induced by SUNLIGHT. CAROTENES contribute yellow and red coloration. Allomelanins,Melanin,Phaeomelanins
D008546 Melanoma, Experimental Experimentally induced tumor that produces MELANIN in animals to provide a model for studying human MELANOMA. B16 Melanoma,Melanoma, B16,Melanoma, Cloudman S91,Melanoma, Harding-Passey,Experimental Melanoma,Experimental Melanomas,Harding Passey Melanoma,Melanomas, Experimental,B16 Melanomas,Cloudman S91 Melanoma,Harding-Passey Melanoma,Melanoma, Harding Passey,Melanomas, B16,S91 Melanoma, Cloudman
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D003543 Cysteamine A mercaptoethylamine compound that is endogenously derived from the COENZYME A degradative pathway. The fact that cysteamine is readily transported into LYSOSOMES where it reacts with CYSTINE to form cysteine-cysteamine disulfide and CYSTEINE has led to its use in CYSTINE DEPLETING AGENTS for the treatment of CYSTINOSIS. Cysteinamine,Mercaptamine,2-Aminoethanethiol,Becaptan,Cystagon,Cysteamine Bitartrate,Cysteamine Dihydrochloride,Cysteamine Hydrobromide,Cysteamine Hydrochloride,Cysteamine Maleate (1:1),Cysteamine Tartrate,Cysteamine Tartrate (1:1),Cysteamine Tosylate,Cysteamine, 35S-Labeled,Mercamine,Mercaptoethylamine,beta-Mercaptoethylamine,2 Aminoethanethiol,35S-Labeled Cysteamine,Bitartrate, Cysteamine,Cysteamine, 35S Labeled,Dihydrochloride, Cysteamine,Hydrobromide, Cysteamine,Hydrochloride, Cysteamine,Tartrate, Cysteamine,Tosylate, Cysteamine,beta Mercaptoethylamine
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D019384 Nucleic Acid Synthesis Inhibitors Compounds that inhibit cell production of DNA or RNA. DNA Polymerase Inhibitor,DNA Synthesis Inhibitor,DNA Synthesis Inhibitors,Nucleic Acid Synthesis Inhibitor,RNA Synthesis Inhibitor,RNA Synthesis Inhibitors,DNA Polymerase Inhibitors,Inhibitors, DNA Synthesis,Inhibitors, Nucleic Acid Synthesis,Inhibitors, RNA Synthesis,Inhibitor, DNA Polymerase,Inhibitor, DNA Synthesis,Inhibitor, RNA Synthesis,Inhibitors, DNA Polymerase,Polymerase Inhibitor, DNA,Polymerase Inhibitors, DNA,Synthesis Inhibitor, DNA,Synthesis Inhibitor, RNA,Synthesis Inhibitors, DNA,Synthesis Inhibitors, RNA

Related Publications

I Yamada, and S Seki, and S Ito, and S Suzuki, and O Matsubara, and T Kasuga
July 1989, Biochemical pharmacology,
I Yamada, and S Seki, and S Ito, and S Suzuki, and O Matsubara, and T Kasuga
March 1992, Cancer letters,
I Yamada, and S Seki, and S Ito, and S Suzuki, and O Matsubara, and T Kasuga
January 1993, Journal of cancer research and clinical oncology,
I Yamada, and S Seki, and S Ito, and S Suzuki, and O Matsubara, and T Kasuga
January 1992, Cancer chemotherapy and pharmacology,
I Yamada, and S Seki, and S Ito, and S Suzuki, and O Matsubara, and T Kasuga
January 2017, African journal of traditional, complementary, and alternative medicines : AJTCAM,
I Yamada, and S Seki, and S Ito, and S Suzuki, and O Matsubara, and T Kasuga
June 1995, Cancer research,
I Yamada, and S Seki, and S Ito, and S Suzuki, and O Matsubara, and T Kasuga
March 2013, Oncology reports,
I Yamada, and S Seki, and S Ito, and S Suzuki, and O Matsubara, and T Kasuga
April 2004, Melanoma research,
I Yamada, and S Seki, and S Ito, and S Suzuki, and O Matsubara, and T Kasuga
February 2006, Pigment cell research,
I Yamada, and S Seki, and S Ito, and S Suzuki, and O Matsubara, and T Kasuga
March 1990, Biochemical pharmacology,
Copied contents to your clipboard!