Effect of hyper-osmotic stress on alanine content of Leishmania major promastigotes. 1991

C Burrows, and J J Blum
Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710.

Earlier studies showed that Leishmania major promastigotes are sensitive to osmotic conditions. A reduction in osmolality caused the cells to shorten and to rapidly release most of their large internal pool of alanine. In this study some effects of hyper-osmotic stress were examined. An increase in osmolality of the culture medium from 308 to 625 mOsm/kg caused only a small decrease in growth rate. When cells grown in the usual culture medium (308 mOsm/kg) were washed, resuspended in iso-osmotic buffer, and subjected to acute hyper-osmotic stress by addition of mannitol, the alanine content increased even in the absence of exogenous substrate. Promastigotes, depleted of alanine by a 5-min exposure to hypo-osmotic conditions, also synthesized alanine when resuspended in iso-osmotic buffer. Washed cells resuspended in iso-osmotic buffer consume their internal pool of alanine under aerobic conditions. Rates of consumption decreased on addition of mannitol, becoming zero at about 440 mOsm/kg. At higher osmolalities, alanine synthesis occurred. To estimate whether proteolysis could account for alanine synthesis in the absence of exogenous substrate, cells that had been grown with [1-14C]leucine were washed and resuspended under hypo-, iso-, and hyper-osmotic conditions and the amounts of 14CO2 and 14C-labelled peptides released in 1 h were measured. Little proteolysis occurred under these conditions, but the possibility that proteolysis was the source of the alanine increase, observed in response to hyper-osmotic stress, cannot be ruled out.

UI MeSH Term Description Entries
D007895 Leishmania tropica A parasitic hemoflagellate of the subgenus Leishmania leishmania that infects humans and rodents. This taxonomic complex includes species which cause a disease called Oriental sore which is a form of cutaneous leishmaniasis (LEISHMANIASIS, CUTANEOUS) of the Old World. Leishmania (Leishmania) tropica,Leishmania tropica minor,Leishmania leishmania tropica,Leishmania tropicas
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000409 Alanine A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM. Abufène,Alanine, L-Isomer,L-Alanine,Alanine, L Isomer,L Alanine,L-Isomer Alanine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C Burrows, and J J Blum
January 1991, The Journal of protozoology,
C Burrows, and J J Blum
January 1997, The Journal of eukaryotic microbiology,
C Burrows, and J J Blum
February 1992, Molecular and biochemical parasitology,
C Burrows, and J J Blum
January 1996, The Journal of eukaryotic microbiology,
C Burrows, and J J Blum
October 2002, Experimental parasitology,
C Burrows, and J J Blum
March 1995, International journal for parasitology,
C Burrows, and J J Blum
January 2020, Infectious disorders drug targets,
C Burrows, and J J Blum
April 1998, Journal of the Egyptian Society of Parasitology,
Copied contents to your clipboard!