Stabilization of non-bilayer structures by the etherlipid ethanolamine plasmalogen. 1991

K Lohner, and P Balgavy, and A Hermetter, and F Paltauf, and P Laggner
Institut für Röntgenfeinstrukturforschung, Osterreichische Akademie der Wissenschaften, Graz, Austria.

The thermotropic phase behavior of mixtures between diradylphosphatidylethanolamines and diacylphosphatidylcholine was studied using polarized light microscopy, 31P-NMR spectroscopy and synchrotron X-ray diffraction. Multilamellar liposomes composed of alkenylacylphosphatidylethanolamine (ethanolamine plasmalogen) undergo a phase transition from a lamellar to an inverse hexagonal lipid structure at 30 degrees C, which is about 20 degrees C and 30 degrees C lower as compared to its alkylacyl- and diacyl-analog, respectively. These results indicate a higher affinity to non-bilayer structures for the ether lipids. In the presence of the bilayer stabilizing phospholipid, palmitoyloleoylphosphatidylcholine, the transition is shifted to higher temperature without any significant changes in the overall structural parameters as revealed by X-ray diffraction experiments. Again, ethanolamine plasmalogen stabilizes the inverted hexagonal phase to the highest extent, i.e. even in the presence of 40 mol% palmitoyloleoylphosphatidylcholine a pure inverse hexagonal phase is formed at 60 degrees C. Such a result was not reported so far for a diacylphosphatidylethanolamine. This property of ethanolamine plasmalogen might be predominantly explained by an optimized packing of the hydrocarbon chains in the corners and interface region of the hexagonal tubes, owing to a different conformation of the sn-2 chain, which was deduced from 2H-NMR experiments (Malthaner, M., Hermetter, A., Paltauf, F. and Seelig, J. (1987) Biochim. Biophys. Acta 900, 191-197). Data obtained by time resolved X-ray diffraction show a coexistence of lamellar and inverse hexagonal structures in the phase transition region, but do not indicate the existence of non-lamellar intermediates or disorder within the sensitivity limits of the method.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010955 Plasmalogens GLYCEROPHOSPHOLIPIDS in which one of the two acyl chains is attached to glycerol with an ether alkenyl linkage instead of an ester as with the other glycerophospholipids. Phosphatidal Compounds,Plasmalogen,Alkenyl Ether Phospholipids,Compounds, Phosphatidal,Ether Phospholipids, Alkenyl,Phospholipids, Alkenyl Ether
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions

Related Publications

K Lohner, and P Balgavy, and A Hermetter, and F Paltauf, and P Laggner
November 1981, Biochimica et biophysica acta,
K Lohner, and P Balgavy, and A Hermetter, and F Paltauf, and P Laggner
March 2021, Brain : a journal of neurology,
K Lohner, and P Balgavy, and A Hermetter, and F Paltauf, and P Laggner
October 1970, The Biochemical journal,
K Lohner, and P Balgavy, and A Hermetter, and F Paltauf, and P Laggner
January 2003, European journal of biochemistry,
K Lohner, and P Balgavy, and A Hermetter, and F Paltauf, and P Laggner
September 1968, The Biochemical journal,
K Lohner, and P Balgavy, and A Hermetter, and F Paltauf, and P Laggner
September 2020, Food & function,
K Lohner, and P Balgavy, and A Hermetter, and F Paltauf, and P Laggner
December 1963, Journal of neurochemistry,
K Lohner, and P Balgavy, and A Hermetter, and F Paltauf, and P Laggner
January 1991, The Biochemical journal,
K Lohner, and P Balgavy, and A Hermetter, and F Paltauf, and P Laggner
July 1966, Lipids,
K Lohner, and P Balgavy, and A Hermetter, and F Paltauf, and P Laggner
September 2011, European journal of nutrition,
Copied contents to your clipboard!