DNA sequence abnormalities of human glucose-6-phosphate dehydrogenase variants. 1991

E Beutler, and W Kuhl, and T Gelbart, and L Forman
Scripps Clinic and Research Foundation, Research Institute of Scripps Clinic, La Jolla, California 92037.

Over 400 supposedly biochemically and genetically distinct variants of glucose-6-phosphate dehydrogenase (G6PD) have been described in the past. In order to investigate these variants at the DNA sequence level we have now determined the relevant sequences of introns of G6PD and describe a method which allows us to rapidly determine the sequence of the entire coding region of G6PD. This technique was applied to six variants that cause G6PD deficiency to be functionally so severe as to result in nonspherocytic hemolytic anemia. Although the patients were all unrelated, G6PD Marion, Gastonia, and Minnesota each had identical mutations, a G----T at nucleotide (nt) 637 in exon 6 leading to a Val----Leu substitution at amino acid 213. The mutations of Nashville and Anaheim were identical to each other, viz. G----A at nt 1178 in exon 10 producing a Arg----His substitution at amino acid 393. G6PD Loma Linda had a C----A substitution at nt 1089 in exon 10, producing a Asn----Lys change at amino acid 363. The results confirm our earlier results suggesting that the NADP-binding site is in a small region of exon 10 and suggest the possibility that this area is also concerned with the binding of glucose-6-P.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005954 Glucosephosphate Dehydrogenase Glucose-6-Phosphate Dehydrogenase,Dehydrogenase, Glucose-6-Phosphate,Dehydrogenase, Glucosephosphate,Glucose 6 Phosphate Dehydrogenase
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000746 Anemia, Hemolytic, Congenital Nonspherocytic Any one of a group of congenital hemolytic anemias in which there is no abnormal hemoglobin or spherocytosis and in which there is a defect of glycolysis in the erythrocyte. Common causes include deficiencies in GLUCOSE-6-PHOSPHATE ISOMERASE; PYRUVATE KINASE; and GLUCOSE-6-PHOSPHATE DEHYDROGENASE. Anemia, Congenital Nonspherocytic Hemolytic,Anemia, Hemolytic Congenital, Nonspherocytic,Congenital Nonspherocytic Hemolytic Anemia,Hemolytic Anemia, Congenital Nonspherocytic
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

E Beutler, and W Kuhl, and T Gelbart, and L Forman
January 1971, Bulletin of the World Health Organization,
E Beutler, and W Kuhl, and T Gelbart, and L Forman
March 1993, Human molecular genetics,
E Beutler, and W Kuhl, and T Gelbart, and L Forman
December 1968, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
E Beutler, and W Kuhl, and T Gelbart, and L Forman
July 1971, Annals of the New York Academy of Sciences,
E Beutler, and W Kuhl, and T Gelbart, and L Forman
January 1968, Annals of internal medicine,
E Beutler, and W Kuhl, and T Gelbart, and L Forman
January 1978, Annals of human genetics,
E Beutler, and W Kuhl, and T Gelbart, and L Forman
October 1973, Annals of human genetics,
E Beutler, and W Kuhl, and T Gelbart, and L Forman
January 1980, Hemoglobin,
E Beutler, and W Kuhl, and T Gelbart, and L Forman
January 1969, Annales des Societes belges de medecine tropicale, de parasitologie, et de mycologie,
E Beutler, and W Kuhl, and T Gelbart, and L Forman
January 1970, Human heredity,
Copied contents to your clipboard!