Nucleotide excision repair of a DNA interstrand cross-link produces single- and double-strand breaks. 2010

Xiaohua Peng, and Avik K Ghosh, and Bennett Van Houten, and Marc M Greenberg
Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA.

The DNA radical resulting from formal abstraction of a hydrogen atom from the thymidine methyl group, 5-(2'-deoxyuridinyl)methyl radical, forms interstrand cross-links with the opposing 2'-deoxyadenosine. This is the first chemically characterized, radical-mediated cross-link between two opposing nucleotides. In addition, cross-linking between opposing bases in the duplex is less common than between those separated by one or two nucleotides. The first step in cross-link repair was investigated using the UvrABC bacterial nucleotide excision repair system. UvrABC incised both strands of the cross-linked DNA, although the strand containing the cross-linked purine was preferred by the enzyme in two different duplexes. The incision sites in one strand were spaced 11-14 nucleotides apart, as is typical for UvrABC incision. The majority of incisions occur at the third phosphate from the 3'-side of the cross-link and eighth or ninth phosphate on the 5'-side. In addition, cleavage was found to occur on both strands, producing double-strand breaks in approximately 25-29% of the incision events. This is the first example of double-strand cleavage during nucleotide excision repair of cross-linked DNA that does not already contain a strand break in the vicinity of the cross-link.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D003857 Deoxyuridine 2'-Deoxyuridine. An antimetabolite that is converted to deoxyuridine triphosphate during DNA synthesis. Laboratory suppression of deoxyuridine is used to diagnose megaloblastic anemias due to vitamin B12 and folate deficiencies. (beta 1-(2-Deoxyribopyranosyl))thymidine
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004706 Endodeoxyribonucleases A group of enzymes catalyzing the endonucleolytic cleavage of DNA. They include members of EC 3.1.21.-, EC 3.1.22.-, EC 3.1.23.- (DNA RESTRICTION ENZYMES), EC 3.1.24.- (DNA RESTRICTION ENZYMES), and EC 3.1.25.-.
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D053903 DNA Breaks, Double-Stranded Interruptions in the sugar-phosphate backbone of DNA, across both strands adjacently. Double-Stranded DNA Breaks,Double-Strand DNA Breaks,Double-Stranded DNA Break,Break, Double-Strand DNA,Break, Double-Stranded DNA,Breaks, Double-Strand DNA,Breaks, Double-Stranded DNA,DNA Break, Double-Strand,DNA Break, Double-Stranded,DNA Breaks, Double Stranded,DNA Breaks, Double-Strand,Double Strand DNA Breaks,Double Stranded DNA Break,Double Stranded DNA Breaks,Double-Strand DNA Break

Related Publications

Xiaohua Peng, and Avik K Ghosh, and Bennett Van Houten, and Marc M Greenberg
August 2009, Biochemistry,
Xiaohua Peng, and Avik K Ghosh, and Bennett Van Houten, and Marc M Greenberg
November 1996, The Journal of biological chemistry,
Xiaohua Peng, and Avik K Ghosh, and Bennett Van Houten, and Marc M Greenberg
February 2001, Molecular and cellular biology,
Xiaohua Peng, and Avik K Ghosh, and Bennett Van Houten, and Marc M Greenberg
January 2007, Neoplasma,
Xiaohua Peng, and Avik K Ghosh, and Bennett Van Houten, and Marc M Greenberg
February 2003, The Journal of biological chemistry,
Xiaohua Peng, and Avik K Ghosh, and Bennett Van Houten, and Marc M Greenberg
July 2004, Molecular and cellular biology,
Xiaohua Peng, and Avik K Ghosh, and Bennett Van Houten, and Marc M Greenberg
September 2018, Genetics,
Xiaohua Peng, and Avik K Ghosh, and Bennett Van Houten, and Marc M Greenberg
June 2021, Annual review of biochemistry,
Xiaohua Peng, and Avik K Ghosh, and Bennett Van Houten, and Marc M Greenberg
March 1993, Radiation research,
Copied contents to your clipboard!