Feline leukemia virus immunity induced by whole inactivated virus vaccination. 2010

Andrea N Torres, and Kevin P O'Halloran, and Laurie J Larson, and Ronald D Schultz, and Edward A Hoover
Department of Microbiology, Immunology, and Pathology, 1619 Campus Delivery, Colorado State University, Ft. Collins, CO 80523-1619, USA.

A fraction of cats exposed to feline leukemia virus (FeLV) effectively contain virus and resist persistent antigenemia/viremia. Using real-time PCR (qPCR) to quantitate circulating viral DNA levels, previously we detected persistent FeLV DNA in blood cells of non-antigenemic cats considered to have resisted FeLV challenge. In addition, previously we used RNA qPCR to quantitate circulating viral RNA levels and determined that the vast majority of viral DNA is transcriptionally active, even in the absence of antigenemia. A single comparison of all USDA-licensed commercially available FeLV vaccines using these modern sensitive methods has not been reported. To determine whether FeLV vaccination would prevent nucleic acid persistence, we assayed circulating viral DNA, RNA, antigen, infectious virus, and virus neutralizing (VN) antibody in vaccinated and unvaccinated cats challenged with infectious FeLV. We identified challenged vaccinates with undetectable antigenemia and viremia concomitant with persistent FeLV DNA and/or RNA. Moreover, these studies demonstrated that two whole inactivated virus (WIV) adjuvanted FeLV vaccines (Fort Dodge Animal Health's Fel-O-Vax Lv-K) and Schering-Plough Animal Health's FEVAXYN FeLV) provided effective protection against FeLV challenge. In nearly every recipient of these vaccines, neither viral DNA, RNA, antigen, nor infectious virus could be detected in blood after FeLV challenge. Interestingly, this effective viral containment occurred despite a weak to undetectable VN antibody response. The above findings reinforce the precept of FeLV infection as a unique model of effective retroviral immunity elicited by WIV vaccination, and as such holds valuable insights into retroviral immunoprevention and therapy.

UI MeSH Term Description Entries
D002371 Cat Diseases Diseases of the domestic cat (Felis catus or F. domesticus). This term does not include diseases of the so-called big cats such as CHEETAHS; LIONS; tigers, cougars, panthers, leopards, and other Felidae for which the heading CARNIVORA is used. Feline Diseases,Cat Disease,Disease, Cat,Disease, Feline,Diseases, Cat,Diseases, Feline,Feline Disease
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005256 Leukemia Virus, Feline A species of GAMMARETROVIRUS causing leukemia, lymphosarcoma, immune deficiency, or other degenerative diseases in cats. Several cellular oncogenes confer on FeLV the ability to induce sarcomas (see also SARCOMA VIRUSES, FELINE). Cat Leukemia Virus,FeLV,Feline Lymphoma Virus,Feline Leukemia Virus,Cat Leukemia Viruses,Feline Leukemia Viruses,Feline Lymphoma Viruses,Leukemia Virus, Cat,Leukemia Viruses, Cat,Leukemia Viruses, Feline,Lymphoma Virus, Feline,Lymphoma Viruses, Feline
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000917 Antibody Formation The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS. Antibody Production,Antibody Response,Antibody Responses,Formation, Antibody,Production, Antibody,Response, Antibody,Responses, Antibody
D012192 Retroviridae Infections Virus diseases caused by the RETROVIRIDAE. Retrovirus Infections,Infections, Retroviridae,Infections, Retrovirus,XMRV Infection,Xenotropic MuLV-related Virus Infection,Xenotropic Murine Leukemia Virus-related Virus Infection,Infection, Retroviridae,Infection, Retrovirus,Infection, XMRV,Infections, XMRV,Retroviridae Infection,Retrovirus Infection,XMRV Infections,Xenotropic MuLV related Virus Infection,Xenotropic Murine Leukemia Virus related Virus Infection
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014412 Tumor Virus Infections Infections produced by oncogenic viruses. The infections caused by DNA viruses are less numerous but more diverse than those caused by the RNA oncogenic viruses. Fibroma, Shope,Papilloma, Shope,Infections, Tumor Virus,Infection, Tumor Virus,Shope Fibroma,Shope Papilloma,Tumor Virus Infection

Related Publications

Andrea N Torres, and Kevin P O'Halloran, and Laurie J Larson, and Ronald D Schultz, and Edward A Hoover
January 1999, Advances in veterinary medicine,
Andrea N Torres, and Kevin P O'Halloran, and Laurie J Larson, and Ronald D Schultz, and Edward A Hoover
January 2010, Veterinary therapeutics : research in applied veterinary medicine,
Andrea N Torres, and Kevin P O'Halloran, and Laurie J Larson, and Ronald D Schultz, and Edward A Hoover
March 1985, Science (New York, N.Y.),
Andrea N Torres, and Kevin P O'Halloran, and Laurie J Larson, and Ronald D Schultz, and Edward A Hoover
December 1977, Cancer research,
Andrea N Torres, and Kevin P O'Halloran, and Laurie J Larson, and Ronald D Schultz, and Edward A Hoover
March 1996, AIDS research and human retroviruses,
Andrea N Torres, and Kevin P O'Halloran, and Laurie J Larson, and Ronald D Schultz, and Edward A Hoover
November 1991, Journal of the American Veterinary Medical Association,
Andrea N Torres, and Kevin P O'Halloran, and Laurie J Larson, and Ronald D Schultz, and Edward A Hoover
November 1991, Journal of the American Veterinary Medical Association,
Andrea N Torres, and Kevin P O'Halloran, and Laurie J Larson, and Ronald D Schultz, and Edward A Hoover
November 1991, Journal of the American Veterinary Medical Association,
Andrea N Torres, and Kevin P O'Halloran, and Laurie J Larson, and Ronald D Schultz, and Edward A Hoover
November 2006, Vaccine,
Andrea N Torres, and Kevin P O'Halloran, and Laurie J Larson, and Ronald D Schultz, and Edward A Hoover
January 1982, Springer seminars in immunopathology,
Copied contents to your clipboard!