Cross-linking with bifunctional reagents and its application to the study of the molecular symmetry and the arrangement of subunits in hexameric protein oligomers. 2010

Abdussalam Azem, and Yossi Tsfadia, and Omar Hajouj, and Isabella Shaked, and Ezra Daniel
Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel.

Cross-linking with a bifunctional reagent and subsequent SDS gel electrophoresis is a simple but effective method to study the symmetry and arrangement of subunits in oligomeric proteins. In this study, theoretical expressions for the description of cross-linking patterns were derived for protein homohexamers through extension of the method used for tetramers by Hajdu et al. (1976). The derived equations were used for the analysis of cross-linking by glutardialdehyde of four protein hexamers: beef liver glutamate dehydrogenase (GDH), jack bean urease, hemocyanin from the spiny lobster Panulirus pencillatus (PpHc), Escherichia coli glutamate decarboxylase (GDC) and for analysis of published data on the cross-linking of hexameric E. coli rho by dimethyl suberimidate. Best fit models showed that the subunits in the first four proteins are arranged according to D(3) symmetry in two layers, each subunit able to cross-link to three neighboring subunits for GDH and urease, or to four for PpHc and GDC. The findings indicate a dimer-of-trimers eclipsed arrangement of subunits for GDH and urease and a trimer-of-dimers staggered one for PpHc and GDC. In rho, the subunits are arranged according to D(3) symmetry in a trimer-of-dimers ring. The conclusions from cross-linking of GDH and GDC, PpHc and rho are consistent with results from X-ray crystal structure, those for urease with findings from electron microscopy.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005968 Glutamate Decarboxylase A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15. Glutamate Carboxy-Lyase,Glutamic Acid Decarboxylase,Acid Decarboxylase, Glutamic,Carboxy-Lyase, Glutamate,Decarboxylase, Glutamate,Decarboxylase, Glutamic Acid,Glutamate Carboxy Lyase
D005969 Glutamate Dehydrogenase An enzyme that catalyzes the conversion of L-glutamate and water to 2-oxoglutarate and NH3 in the presence of NAD+. (From Enzyme Nomenclature, 1992) EC 1.4.1.2. Dehydrogenase, Glutamate
D005976 Glutaral One of the protein CROSS-LINKING REAGENTS that is used as a disinfectant for sterilization of heat-sensitive equipment and as a laboratory reagent, especially as a fixative. Glutaraldehyde,Cidex,Diswart,Gludesin,Glutardialdehyde,Glutarol,Korsolex,Novaruca,Sekumatic,Sonacide,Sporicidin
D006433 Hemocyanins Metalloproteins that function as oxygen transport proteins in the HEMOLYMPH of MOLLUSKS and ARTHROPODS. They are characterized by two copper atoms, coordinated with HISTIDINE residues, that reversibly bind a single oxygen molecule; they do not contain HEME groups. Hemocyanin,alpha-Haemocyanin,alpha-Hemocyanin,alpha-Hemocyanins,alpha Haemocyanin,alpha Hemocyanin,alpha Hemocyanins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Abdussalam Azem, and Yossi Tsfadia, and Omar Hajouj, and Isabella Shaked, and Ezra Daniel
January 1984, Biophysical chemistry,
Abdussalam Azem, and Yossi Tsfadia, and Omar Hajouj, and Isabella Shaked, and Ezra Daniel
November 1987, Journal of virological methods,
Abdussalam Azem, and Yossi Tsfadia, and Omar Hajouj, and Isabella Shaked, and Ezra Daniel
November 1968, Journal of molecular biology,
Abdussalam Azem, and Yossi Tsfadia, and Omar Hajouj, and Isabella Shaked, and Ezra Daniel
January 1978, Doklady Akademii nauk SSSR,
Abdussalam Azem, and Yossi Tsfadia, and Omar Hajouj, and Isabella Shaked, and Ezra Daniel
April 1984, The Journal of biological chemistry,
Abdussalam Azem, and Yossi Tsfadia, and Omar Hajouj, and Isabella Shaked, and Ezra Daniel
August 1965, Cancer research,
Abdussalam Azem, and Yossi Tsfadia, and Omar Hajouj, and Isabella Shaked, and Ezra Daniel
January 1978, Journal of supramolecular structure,
Abdussalam Azem, and Yossi Tsfadia, and Omar Hajouj, and Isabella Shaked, and Ezra Daniel
January 1988, Methods in enzymology,
Abdussalam Azem, and Yossi Tsfadia, and Omar Hajouj, and Isabella Shaked, and Ezra Daniel
July 1977, Biochemistry,
Abdussalam Azem, and Yossi Tsfadia, and Omar Hajouj, and Isabella Shaked, and Ezra Daniel
October 1990, European journal of biochemistry,
Copied contents to your clipboard!