Prolonged cardiac allograft survival in mouse model after complement depletion with Yunnan cobra venom factor. 2009

W Wu, and H-D Wang, and X-X Zhu, and G Lan, and K Yang
Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University, 30 Gaotanyan St, Shapingba District, Chongqing 400038, China. wuweiyahoo@sohu.com

BACKGROUND Activation of the complement system is the leading mechanism that causes antibody-mediated acute rejection and hyperacute rejection after xenotransplantation. The major cause of acute rejection in allogeneic transplantation is the T cell-mediated specific immune response. We studied the effects of complement on acute rejection after cardiac allotransplantation using complement depletion with cobra venom factor (CVF) in the mouse. METHODS The Balb/c-C57 mouse model of heterotopic cardiac allograft was used. The mice were divided into 2 groups, a control group and a CVF-treated group. After intravenous injection of CVF, the experimental group was observed for allograft survival time. Twelve mice from the control and experimental groups were sacrificed on days 3, 5, and 7 after the operation. The pathologic grade of acute rejection, deposition of C3 in tissue, extent of infiltration by CD4+ and CD8+ T cells, and expression of MHC-II, B7-1, and B7-2 were compared between the 2 groups. RESULTS In the CVF-treated group, mean (SD) survival of the cardiac allograft was 26.2 (1.7) days, and in the control group was 8.4 (0.4) days (P < .01). Pathologic examination and immunohistochemistry demonstrated that the grade of acute rejection, deposition of C3 in tissue, extent of infiltration of CD4+ and CD8+ T cells, and expression of MHC-II, B7-1, and B7-2 were significantly decreased in the CVF-treated group. CONCLUSIONS Depletion of complement in the serum with CVF inhibits acute cardiac allograft rejection in the mouse.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D004546 Elapid Venoms Venoms from snakes of the family Elapidae, including cobras, kraits, mambas, coral, tiger, and Australian snakes. The venoms contain polypeptide toxins of various kinds, cytolytic, hemolytic, and neurotoxic factors, but fewer enzymes than viper or crotalid venoms. Many of the toxins have been characterized. Cobra Venoms,Elapidae Venom,Elapidae Venoms,Naja Venoms,Cobra Venom,Elapid Venom,Hydrophid Venom,Hydrophid Venoms,King Cobra Venom,Naja Venom,Ophiophagus hannah Venom,Sea Snake Venom,Sea Snake Venoms,Venom, Cobra,Venom, Elapid,Venom, Elapidae,Venom, Hydrophid,Venom, King Cobra,Venom, Naja,Venom, Ophiophagus hannah,Venom, Sea Snake,Venoms, Cobra,Venoms, Elapid,Venoms, Elapidae,Venoms, Hydrophid,Venoms, Naja,Venoms, Sea Snake
D006085 Graft Survival The survival of a graft in a host, the factors responsible for the survival and the changes occurring within the graft during growth in the host. Graft Survivals,Survival, Graft,Survivals, Graft
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D014184 Transplantation, Homologous Transplantation between individuals of the same species. Usually refers to genetically disparate individuals in contradistinction to isogeneic transplantation for genetically identical individuals. Transplantation, Allogeneic,Allogeneic Grafting,Allogeneic Transplantation,Allografting,Homografting,Homologous Transplantation,Grafting, Allogeneic
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte
D016027 Heart Transplantation The transference of a heart from one human or animal to another. Cardiac Transplantation,Grafting, Heart,Transplantation, Cardiac,Transplantation, Heart,Cardiac Transplantations,Graftings, Heart,Heart Grafting,Heart Graftings,Heart Transplantations,Transplantations, Cardiac,Transplantations, Heart

Related Publications

W Wu, and H-D Wang, and X-X Zhu, and G Lan, and K Yang
December 2006, Transplantation proceedings,
W Wu, and H-D Wang, and X-X Zhu, and G Lan, and K Yang
January 2010, Advances in experimental medicine and biology,
W Wu, and H-D Wang, and X-X Zhu, and G Lan, and K Yang
January 2010, Xenotransplantation,
W Wu, and H-D Wang, and X-X Zhu, and G Lan, and K Yang
September 2003, Toxicon : official journal of the International Society on Toxinology,
W Wu, and H-D Wang, and X-X Zhu, and G Lan, and K Yang
January 2007, Current pharmaceutical design,
W Wu, and H-D Wang, and X-X Zhu, and G Lan, and K Yang
December 2010, Toxicon : official journal of the International Society on Toxinology,
W Wu, and H-D Wang, and X-X Zhu, and G Lan, and K Yang
October 1971, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
W Wu, and H-D Wang, and X-X Zhu, and G Lan, and K Yang
March 2015, Thrombosis and haemostasis,
Copied contents to your clipboard!