Signaling motifs and Weber's law. 2009

James E Ferrell
Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford CA 94305-5174, USA. james.ferrell@stanford.edu

New experimental and theoretical studies reported by Uri Alon, Marc Kirschner, and colleagues in this issue of Molecular Cell suggest that Weber's law of sensory perception may apply to a number of cell signaling processes.

UI MeSH Term Description Entries
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D047108 Embryonic Development Morphological and physiological development of EMBRYOS. Embryo Development,Embryogenesis,Postimplantation Embryo Development,Preimplantation Embryo Development,Embryonic Programming,Post-implantation Embryo Development,Postnidation Embryo Development,Postnidation Embryo Development, Animal,Pre-implantation Embryo Development,Prenidation Embryo Development, Animal,Development, Embryo,Development, Embryonic,Development, Postnidation Embryo,Embryo Development, Post-implantation,Embryo Development, Postimplantation,Embryo Development, Postnidation,Embryo Development, Pre-implantation,Embryo Development, Preimplantation,Embryonic Developments,Embryonic Programmings,Post implantation Embryo Development,Pre implantation Embryo Development
D048049 Extracellular Signal-Regulated MAP Kinases A mitogen-activated protein kinase subfamily that is widely expressed and plays a role in regulation of MEIOSIS; MITOSIS; and post mitotic functions in differentiated cells. The extracellular signal regulated MAP kinases are regulated by a broad variety of CELL SURFACE RECEPTORS and can be activated by certain CARCINOGENS. ERK MAP Kinase,ERK MAP Kinases,Extracellular Signal-Regulated Kinase,Extracellular Signal-Regulated Kinases,Extracellular Signal-Regulated MAP Kinase,MAP Kinases, Extracellular Signal-Regulated,Extracellular Signal Regulated Kinase,Extracellular Signal Regulated Kinases,Extracellular Signal Regulated MAP Kinase,Extracellular Signal Regulated MAP Kinases,Kinase, ERK MAP,Kinase, Extracellular Signal-Regulated,Kinases, Extracellular Signal-Regulated,MAP Kinase, ERK,MAP Kinases, Extracellular Signal Regulated,Signal-Regulated Kinase, Extracellular

Related Publications

James E Ferrell
October 2023, Current biology : CB,
James E Ferrell
September 1916, Science (New York, N.Y.),
James E Ferrell
December 2008, Current biology : CB,
James E Ferrell
November 1966, The Journal of the Acoustical Society of America,
James E Ferrell
September 1998, Journal of theoretical biology,
James E Ferrell
April 1965, Perceptual and motor skills,
James E Ferrell
October 1959, The Journal of general psychology,
James E Ferrell
January 2015, Journal of vision,
James E Ferrell
February 1969, Perceptual and motor skills,
James E Ferrell
January 1983, The American review of respiratory disease,
Copied contents to your clipboard!