Phosphoramide mustard is responsible for the ovarian toxicity of cyclophosphamide. 1991

D R Plowchalk, and D R Mattison
Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock 72205.

Although cyclophosphamide (CPA) is an ovarian toxicant, the responsible metabolite(s) have not been identified. The purpose of these experiments was to determine if phosphoramide mustard or acrolein were the proximate toxicants produced by metabolic activation of CPA. To do this analogs of CPA known to generate either phosphoramide mustard or acrolein in vivo were assessed for their ability to produce ovarian toxicity as measured by differential follicle destruction, ovarian volume loss, and uterine weight loss and compared to the effects produced by CPA. Phosphoramide mustard cyclohexylamine salt (PMC) and trans-4-phenylcyclophosphamide (T4P), both of which generate phosphoramide mustard, and didechlorocyclophosphamide (DCPA) and allyl alcohol (AA) which generate acrolein were administered ip to female C57BL/6N mice, 10-12 weeks old, at doses equimolar to 0, 25, 75, 200, or 500 mg/kg of CPA. Three days later the animals were killed, their uterine weights measured and their ovaries removed, fixed, and serially sectioned. Only PMC and T4P produced ovarian toxicity. On an equimolar basis these compounds were over twice as potent as CPA. Both caused a significant reduction in uterine weight (to 50% of controls) at doses of 200 (PMC) and 150 mg/kg (T4P). PMC and T4P also caused a 50% reduction in ovarian volume at doses above 75 mg/kg. Primordial follicles were most sensitive; ED50s were 76.9, 25.3, and 19.3 mg/kg (0.276, 0.091, and 0.069 mmol/kg) for CPA, PMC, and T4P, respectively. Growing follicle numbers were also reduced by T4P and PMC, an effect not seen with CPA treatment. Finally, antral follicles were significantly reduced by all doses of PMC, and with T4P at doses greater than 75 mg/kg. The highest doses of PMC, T4P, and CPA all caused a reduction in antral follicle numbers to less than one percent of controls. Didechlorocyclophosphamide (DCPA) and allyl alcohol (AA), compounds that generate acrolein but not phosphoramide mustard in vivo, had no effect on any of the parameters measured even when injected directly into the ovary. This suggests that phosphoramide mustard is responsible for CPA ovarian toxicity. The greater potency of PMC and T4P compared to CPA is likely the result of these compounds bypassing important detoxification steps, therefore, more of the parent compound reaches the ovary as the toxic metabolite.

UI MeSH Term Description Entries
D007267 Injections Introduction of substances into the body using a needle and syringe. Injectables,Injectable,Injection
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D010752 Phosphoramide Mustards A group of nitrogen mustard compounds which are substituted with a phosphoramide group or its derivatives. They are usually cytotoxic and used as antineoplastic agents. Mustards, Phosphoramide
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D003520 Cyclophosphamide Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to form the active aldophosphamide. It has been used in the treatment of LYMPHOMA and LEUKEMIA. Its side effect, ALOPECIA, has been used for defleecing sheep. Cyclophosphamide may also cause sterility, birth defects, mutations, and cancer. (+,-)-2-(bis(2-Chloroethyl)amino)tetrahydro-2H-1,3,2-oxazaphosphorine 2-Oxide Monohydrate,B-518,Cyclophosphamide Anhydrous,Cyclophosphamide Monohydrate,Cyclophosphamide, (R)-Isomer,Cyclophosphamide, (S)-Isomer,Cyclophosphane,Cytophosphan,Cytophosphane,Cytoxan,Endoxan,NSC-26271,Neosar,Procytox,Sendoxan,B 518,B518,NSC 26271,NSC26271
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D006080 Ovarian Follicle An OOCYTE-containing structure in the cortex of the OVARY. The oocyte is enclosed by a layer of GRANULOSA CELLS providing a nourishing microenvironment (FOLLICULAR FLUID). The number and size of follicles vary depending on the age and reproductive state of the female. The growing follicles are divided into five stages: primary, secondary, tertiary, Graafian, and atretic. Follicular growth and steroidogenesis depend on the presence of GONADOTROPINS. Graafian Follicle,Atretic Follicle,Ovarian Follicles,Atretic Follicles,Follicle, Atretic,Follicle, Graafian,Follicle, Ovarian,Follicles, Atretic,Follicles, Graafian,Follicles, Ovarian,Graafian Follicles
D000171 Acrolein Unsaturated three-carbon aldehyde. 2-Propenal,Acraldehyde,Acrylaldehyde,Acrylic Aldehyde,Allyl Aldehyde,Aqualin,Ethylene Aldehyde,2 Propenal,Aldehyde, Acrylic,Aldehyde, Allyl,Aldehyde, Ethylene

Related Publications

D R Plowchalk, and D R Mattison
August 1982, Cancer treatment reports,
D R Plowchalk, and D R Mattison
August 2017, The British journal of dermatology,
D R Plowchalk, and D R Mattison
February 2017, Biology of reproduction,
D R Plowchalk, and D R Mattison
March 1976, Cancer research,
D R Plowchalk, and D R Mattison
October 2014, Toxicological sciences : an official journal of the Society of Toxicology,
D R Plowchalk, and D R Mattison
January 1990, Cancer chemotherapy and pharmacology,
D R Plowchalk, and D R Mattison
June 1995, Journal of medicinal chemistry,
Copied contents to your clipboard!