Tumor Necrosis Factor alpha (TNFalpha) regulates CD40 expression through SMAR1 phosphorylation. 2010

Kamini Singh, and Surajit Sinha, and Sunil Kumar Malonia, and Samit Chattopadhyay
National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411 007, Maharashtra, India.

CD40 plays an important role in mediating inflammatory response and is mainly induced by JAK/STAT phosphorylation cascade. TNFalpha is the key cytokine that activates CD40 during inflammation and tumorigenesis. We have earlier shown that SMAR1 can repress the transcription of Cyclin D1 promoter by forming a HDAC1 dependent repressor complex. In this study, we show that SMAR1 regulates the transcription of NF-kappaB target gene CD40. SMAR1 recruits HDAC1 and forms a repressor complex on CD40 promoter and keeps its basal transcription in check. Further, we show that TNFalpha stimulation induces SMAR1 phosphorylation at Ser-347 and promotes its cytoplasmic translocation, thus releasing its negative effect. Concomitantly, TNFalpha induced phosphorylation of STAT1 at Tyr-701 by JAK1 facilitates its nuclear translocation and activation of CD40 through p300 recruitment and core Histone-3 acetylation. Thus, TNFalpha mediated regulation of CD40 expression occurs by dual phosphorylation of SMAR1 and STAT1.

UI MeSH Term Description Entries
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012694 Serine A non-essential amino acid occurring in natural form as the L-isomer. It is synthesized from GLYCINE or THREONINE. It is involved in the biosynthesis of PURINES; PYRIMIDINES; and other amino acids. L-Serine,L Serine
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha

Related Publications

Kamini Singh, and Surajit Sinha, and Sunil Kumar Malonia, and Samit Chattopadhyay
August 2005, Nihon rinsho. Japanese journal of clinical medicine,
Kamini Singh, and Surajit Sinha, and Sunil Kumar Malonia, and Samit Chattopadhyay
January 2003, Acta neurochirurgica. Supplement,
Kamini Singh, and Surajit Sinha, and Sunil Kumar Malonia, and Samit Chattopadhyay
July 2007, The Journal of biological chemistry,
Kamini Singh, and Surajit Sinha, and Sunil Kumar Malonia, and Samit Chattopadhyay
July 2002, Immunology,
Kamini Singh, and Surajit Sinha, and Sunil Kumar Malonia, and Samit Chattopadhyay
June 1999, Shock (Augusta, Ga.),
Kamini Singh, and Surajit Sinha, and Sunil Kumar Malonia, and Samit Chattopadhyay
September 2011, Chinese medical journal,
Kamini Singh, and Surajit Sinha, and Sunil Kumar Malonia, and Samit Chattopadhyay
June 1993, The American journal of pathology,
Kamini Singh, and Surajit Sinha, and Sunil Kumar Malonia, and Samit Chattopadhyay
January 1999, Journal of cell science,
Kamini Singh, and Surajit Sinha, and Sunil Kumar Malonia, and Samit Chattopadhyay
January 2002, Journal of neurochemistry,
Kamini Singh, and Surajit Sinha, and Sunil Kumar Malonia, and Samit Chattopadhyay
February 2007, Cancer research,
Copied contents to your clipboard!