4-Hydroxytamoxifen inhibits K(+) currents in mouse ventricular myocytes. 2010

Gracia El Gebeily, and Céline Fiset
Research Center, Montreal Heart Institute, 5000 Bélanger, Montréal, Québec, Canada H1T 1C8.

Tamoxifen is a widely used chemotherapeutic agent, which has been associated with prolongation of the QT interval. Other studies have reported that acute exposure to tamoxifen can reduce cardiac K(+) currents. However, in vivo tamoxifen is largely metabolized and most of its activity is attributable to its major metabolite, 4-hydroxytamoxifen (4OH-tamoxifen). Accordingly, in the present study, we performed voltage-clamp experiments to directly investigate the effects of 4OH-tamoxifen on the repolarizing K(+) currents in adult mouse ventricular myocytes in order to determine whether the effects of tamoxifen on repolarization could be ascribed to 4OH-tamoxifen. K(+) currents were recorded before and after acute exposure to 4OH-tamoxifen (0.5, 1 and 10microM). 4OH-tamoxifen reduced the density of the Ca(2+)-independent transient outward (I(to)), the ultrarapid delayed rectifier (I(Kur)) and the inward rectifier (I(K1)) K(+) currents (by up to 43%, 41% and 26%, respectively) but had no significant effect on the steady-state outward K(+) current (I(ss)). Voltage dependence of steady-state inactivation and reactivation time of I(to) and I(Kur) were not affected by 4OH-tamoxifen. Experiments using the pure estrogen receptor antagonist, ICI 182,780 and the inhibitor of gene transcription, actinomycin D, were undertaken to assess the involvement of estrogen receptor. Administered alone these compounds did not affect the density of K(+) currents. Moreover, pretreatment of the cells with ICI 182,780 or actinomycin D did not prevent the inhibitory response to 4OH-tamoxifen. Overall, 4OH-tamoxifen reduced K(+) currents in mouse ventricle and this effect is unrelated to gene transcription and does not involve interaction of the drug with estrogen receptor.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000077267 Fulvestrant An estradiol derivative and estrogen receptor antagonist that is used for the treatment of estrogen receptor-positive, locally advanced or metastatic breast cancer. 7-(9-(4,4,5,5,5-pentafluoropentylsulfinyl)nonyl)estra-1,3,5(10)-triene-3,17-diol,Faslodex,ICI 182,780,ICI 182780,ICI-182780,ZM 182780,ZM-182780,ICI182780,ZM182780
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Gracia El Gebeily, and Céline Fiset
August 2003, American journal of physiology. Heart and circulatory physiology,
Gracia El Gebeily, and Céline Fiset
September 2004, The Journal of physiology,
Gracia El Gebeily, and Céline Fiset
May 2016, Experimental and therapeutic medicine,
Gracia El Gebeily, and Céline Fiset
May 1999, The Journal of general physiology,
Gracia El Gebeily, and Céline Fiset
April 1999, Yonsei medical journal,
Gracia El Gebeily, and Céline Fiset
September 1992, European journal of pharmacology,
Gracia El Gebeily, and Céline Fiset
October 2018, Canadian journal of physiology and pharmacology,
Gracia El Gebeily, and Céline Fiset
April 1994, Circulation research,
Gracia El Gebeily, and Céline Fiset
February 2001, Journal of cardiovascular electrophysiology,
Gracia El Gebeily, and Céline Fiset
December 1992, European journal of pharmacology,
Copied contents to your clipboard!