Autonomic control of heart rate and its variability during normoxia and hypoxia in emu (Dromaius novaehollandiae) hatchlings. 2010

R Shah, and H Greyner, and E M Dzialowski
Department of Biological Sciences, 1155 Union Circle #305220, University of North Texas, Denton 76203, USA.

Heart rate variability is a common feature of the vertebrate cardiovascular system and is a consequence of variable input from the sympathetic and parasympathetic branches of the autonomic nervous system. The aim of this study was to examine the role of the autonomic nervous system in regulating heart rate and heart rate variability in 1-d-old emu hatchlings in normoxia and during exposure to 10% O2. The role of the autonomic nervous system in controlling emu heart rate and its variability was examined by blocking the action of the cholinergic and adrenergic pathways by administration of atropine and propranolol. Heart rate of 1-d-old hatchlings exhibited a significant cholinergic tone of 60 +/- 22 beats per minute (bpm) and beta-adrenergic tone of 28 +/- 17 bpm. Cholinergic tone was unchanged during hypoxic exposure (63.5 +/- 17.7 bpm), but adrenergic tone doubled to 68 +/- 15 bpm. Initially, the majority of hatchlings exhibited high frequency oscillations with a spectral peak at 0.22 +/- 0.02 Hz, associated with respiratory sinus arrhythmia. Beta-adrenergic blockade had no effect on respiratory sinus arrhythmia or spectral power in high frequency (HF; 0.1 to 0.7 Hz), low frequency (LF; 0.01 to 0.1 Hz), or total frequency (TF) ranges. After cholinergic blockade, spectral power in HF, LF, and TF ranges and respiratory sinus arrhythmia were all abolished. Hypoxia did not initially alter spectral power in the HF, LF, or TF ranges. beta-Adrenergic blockade along with hypoxia produced a significant increase in LF oscillations. A distinct LF oscillation appeared in most birds exposed to hypoxia that was abolished by cholinergic blockade. We conclude that although both the sympathetic and parasympathetic system exert a tonic influence on heart rate, the majority of HF and TF heart rate variability is mediated by the parasympathetic system in the emu hatchling. The sympathetic system contributes to LF heart rate oscillations by suppressing the influence of the parasympathetic system on LF oscillations.

UI MeSH Term Description Entries
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010276 Parasympatholytics Agents that inhibit the actions of the parasympathetic nervous system. The major group of drugs used therapeutically for this purpose is the MUSCARINIC ANTAGONISTS. Antispasmodic,Antispasmodic Agent,Antispasmodic Drug,Antispasmodics,Parasympathetic-Blocking Agent,Parasympathetic-Blocking Agents,Parasympatholytic,Parasympatholytic Agent,Parasympatholytic Drug,Spasmolytic,Spasmolytics,Antispasmodic Agents,Antispasmodic Drugs,Antispasmodic Effect,Antispasmodic Effects,Parasympatholytic Agents,Parasympatholytic Drugs,Parasympatholytic Effect,Parasympatholytic Effects,Agent, Antispasmodic,Agent, Parasympathetic-Blocking,Agent, Parasympatholytic,Agents, Antispasmodic,Agents, Parasympathetic-Blocking,Agents, Parasympatholytic,Drug, Antispasmodic,Drug, Parasympatholytic,Drugs, Antispasmodic,Drugs, Parasympatholytic,Effect, Antispasmodic,Effect, Parasympatholytic,Effects, Antispasmodic,Effects, Parasympatholytic,Parasympathetic Blocking Agent,Parasympathetic Blocking Agents
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D000319 Adrenergic beta-Antagonists Drugs that bind to but do not activate beta-adrenergic receptors thereby blocking the actions of beta-adrenergic agonists. Adrenergic beta-antagonists are used for treatment of hypertension, cardiac arrhythmias, angina pectoris, glaucoma, migraine headaches, and anxiety. Adrenergic beta-Antagonist,Adrenergic beta-Receptor Blockader,Adrenergic beta-Receptor Blockaders,beta-Adrenergic Antagonist,beta-Adrenergic Blocker,beta-Adrenergic Blocking Agent,beta-Adrenergic Blocking Agents,beta-Adrenergic Receptor Blockader,beta-Adrenergic Receptor Blockaders,beta-Adrenoceptor Antagonist,beta-Blockers, Adrenergic,beta-Adrenergic Antagonists,beta-Adrenergic Blockers,beta-Adrenoceptor Antagonists,Adrenergic beta Antagonist,Adrenergic beta Antagonists,Adrenergic beta Receptor Blockader,Adrenergic beta Receptor Blockaders,Adrenergic beta-Blockers,Agent, beta-Adrenergic Blocking,Agents, beta-Adrenergic Blocking,Antagonist, beta-Adrenergic,Antagonist, beta-Adrenoceptor,Antagonists, beta-Adrenergic,Antagonists, beta-Adrenoceptor,Blockader, Adrenergic beta-Receptor,Blockader, beta-Adrenergic Receptor,Blockaders, Adrenergic beta-Receptor,Blockaders, beta-Adrenergic Receptor,Blocker, beta-Adrenergic,Blockers, beta-Adrenergic,Blocking Agent, beta-Adrenergic,Blocking Agents, beta-Adrenergic,Receptor Blockader, beta-Adrenergic,Receptor Blockaders, beta-Adrenergic,beta Adrenergic Antagonist,beta Adrenergic Antagonists,beta Adrenergic Blocker,beta Adrenergic Blockers,beta Adrenergic Blocking Agent,beta Adrenergic Blocking Agents,beta Adrenergic Receptor Blockader,beta Adrenergic Receptor Blockaders,beta Adrenoceptor Antagonist,beta Adrenoceptor Antagonists,beta Blockers, Adrenergic,beta-Antagonist, Adrenergic,beta-Antagonists, Adrenergic,beta-Receptor Blockader, Adrenergic,beta-Receptor Blockaders, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D001285 Atropine An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine. AtroPen,Atropin Augenöl,Atropine Sulfate,Atropine Sulfate Anhydrous,Atropinol,Anhydrous, Atropine Sulfate,Augenöl, Atropin,Sulfate Anhydrous, Atropine,Sulfate, Atropine
D020310 Struthioniformes An order of flightless birds comprising the ostriches, which naturally inhabit open, low rainfall areas of Africa. Ostriches

Related Publications

R Shah, and H Greyner, and E M Dzialowski
March 2007, Respiratory physiology & neurobiology,
R Shah, and H Greyner, and E M Dzialowski
May 1997, Journal of neurochemistry,
R Shah, and H Greyner, and E M Dzialowski
September 2015, Journal of zoo and wildlife medicine : official publication of the American Association of Zoo Veterinarians,
R Shah, and H Greyner, and E M Dzialowski
January 2011, Developmental dynamics : an official publication of the American Association of Anatomists,
R Shah, and H Greyner, and E M Dzialowski
May 1996, Veterinary pathology,
R Shah, and H Greyner, and E M Dzialowski
July 1994, Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc,
R Shah, and H Greyner, and E M Dzialowski
August 2010, Anatomia, histologia, embryologia,
R Shah, and H Greyner, and E M Dzialowski
April 2015, Journal of food science and technology,
R Shah, and H Greyner, and E M Dzialowski
January 1996, Avian diseases,
R Shah, and H Greyner, and E M Dzialowski
September 2013, Veterinary microbiology,
Copied contents to your clipboard!