Determination of gene expression patterns using in situ hybridization to Drosophila testes. 2009

Ceri A Morris, and Elizabeth Benson, and Helen White-Cooper
Department of Biosciences, University of Cardiff, Cardiff, UK.

We describe a whole-mount RNA in situ hybridization (ISH) method optimized for detection of the cellular and subcellular distributions of specific mRNA within Drosophila testes and male genital tract. Digoxygenin (dig)-labeled antisense RNA probes are in vitro transcribed from a template synthesized by (RT)-PCR; the probe length is reduced by hydrolysis. Testes and male genital tracts are dissected from adult flies, fixed and processed for hybridization. Both probe and fixed testes can be stored before use. Extensive post-hybridization washing reduces the background. Detection is through alkaline phosphatase-conjugated anti-dig antibodies followed by a color reaction. This protocol is suitable for low-medium throughput applications with parallel processing of 2-48 samples, and takes 4-5 d to complete. We have used this protocol, which is similar to other RNA ISH protocols, but optimized for whole-mount Drosophila testes, to document the expression of about 1,000 genes in Drosophila melanogaster male genital tract.

UI MeSH Term Description Entries
D008297 Male Males
D004076 Digoxigenin 3 beta,12 beta,14-Trihydroxy-5 beta-card-20(22)-enolide. A cardenolide which is the aglycon of digoxin. Can be obtained by hydrolysis of digoxin or from Digitalis orientalis L. and Digitalis lanata Ehrh. Lanadigenin
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013737 Testis The male gonad containing two functional parts: the SEMINIFEROUS TUBULES for the production and transport of male germ cells (SPERMATOGENESIS) and the interstitial compartment containing LEYDIG CELLS that produce ANDROGENS. Testicles,Testes,Testicle
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations
D049452 Green Fluorescent Proteins Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH. Green Fluorescent Protein,Green-Fluorescent Protein,Green-Fluorescent Proteins,Fluorescent Protein, Green,Fluorescent Proteins, Green,Protein, Green Fluorescent,Protein, Green-Fluorescent,Proteins, Green Fluorescent,Proteins, Green-Fluorescent
D020133 Reverse Transcriptase Polymerase Chain Reaction A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols. Polymerase Chain Reaction, Reverse Transcriptase,Reverse Transcriptase PCR,PCR, Reverse Transcriptase,Transcriptase PCR, Reverse
D020869 Gene Expression Profiling The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell. Gene Expression Analysis,Gene Expression Pattern Analysis,Transcript Expression Analysis,Transcriptome Profiling,Transcriptomics,mRNA Differential Display,Gene Expression Monitoring,Transcriptome Analysis,Analyses, Gene Expression,Analyses, Transcript Expression,Analyses, Transcriptome,Analysis, Gene Expression,Analysis, Transcript Expression,Analysis, Transcriptome,Differential Display, mRNA,Differential Displays, mRNA,Expression Analyses, Gene,Expression Analysis, Gene,Gene Expression Analyses,Gene Expression Monitorings,Gene Expression Profilings,Monitoring, Gene Expression,Monitorings, Gene Expression,Profiling, Gene Expression,Profiling, Transcriptome,Profilings, Gene Expression,Profilings, Transcriptome,Transcript Expression Analyses,Transcriptome Analyses,Transcriptome Profilings,mRNA Differential Displays

Related Publications

Ceri A Morris, and Elizabeth Benson, and Helen White-Cooper
January 2009, Nature protocols,
Ceri A Morris, and Elizabeth Benson, and Helen White-Cooper
August 2007, CSH protocols,
Ceri A Morris, and Elizabeth Benson, and Helen White-Cooper
January 2023, Methods in molecular biology (Clifton, N.J.),
Ceri A Morris, and Elizabeth Benson, and Helen White-Cooper
January 2012, Methods in molecular biology (Clifton, N.J.),
Ceri A Morris, and Elizabeth Benson, and Helen White-Cooper
January 2012, Methods in molecular biology (Clifton, N.J.),
Ceri A Morris, and Elizabeth Benson, and Helen White-Cooper
March 2021, Methods and protocols,
Ceri A Morris, and Elizabeth Benson, and Helen White-Cooper
January 2019, Methods in molecular biology (Clifton, N.J.),
Ceri A Morris, and Elizabeth Benson, and Helen White-Cooper
January 1989, Ontogenez,
Ceri A Morris, and Elizabeth Benson, and Helen White-Cooper
October 2014, Nature protocols,
Ceri A Morris, and Elizabeth Benson, and Helen White-Cooper
January 2001, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!