Cooperative and competitive interactions facilitate stereo computations in macaque primary visual cortex. 2009

Jason M Samonds, and Brian R Potetz, and Tai Sing Lee
Center for the Neural Basis of Cognition and Computer Science Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA. samondjm@cnbc.cmu.edu

Inferring depth from binocular disparities is a difficult problem for the visual system because local features in the left- and right-eye images must be matched correctly to solve this "stereo correspondence problem." Cortical architecture and computational studies suggest that lateral interactions among neurons could help resolve local uncertainty about disparity encoded in individual neurons by incorporating contextual constraints. We found that correlated activity among pairs of neurons in primary visual cortex depended both on disparity-tuning relationships and the stimuli displayed within the receptive fields of the neurons. Nearby pairs of neurons with distinct disparity tuning exhibited a decrease in spike correlation at competing disparities soon after response onset. Distant neuronal pairs of similar disparity tuning exhibited an increase in spike correlation at mutually preferred disparities. The observed correlated activity and response dynamics suggests that local competitive and distant cooperative interactions improve disparity tuning of individual neurons over time. Such interactions could represent a neural substrate for the principal constraints underlying cooperative stereo algorithms.

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D009039 Motion Perception The real or apparent movement of objects through the visual field. Movement Perception,Perception, Motion,Perception, Movement
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway
D015357 Vision Disparity The difference between two images on the retina when looking at a visual stimulus. This occurs since the two retinas do not have the same view of the stimulus because of the location of our eyes. Thus the left eye does not get exactly the same view as the right eye. Binocular Disparity,Fixation Disparity,Ocular Disparity,Parallax, Ocular,Retinal Disparity,Visual Disparity,Binocular Disparities,Disparities, Binocular,Disparities, Fixation,Disparities, Ocular,Disparities, Retinal,Disparities, Vision,Disparities, Visual,Disparity, Binocular,Disparity, Fixation,Disparity, Ocular,Disparity, Retinal,Disparity, Vision,Disparity, Visual,Fixation Disparities,Ocular Disparities,Ocular Parallax,Retinal Disparities,Vision Disparities,Visual Disparities

Related Publications

Jason M Samonds, and Brian R Potetz, and Tai Sing Lee
February 2003, Neuron,
Jason M Samonds, and Brian R Potetz, and Tai Sing Lee
November 2002, Neuron,
Jason M Samonds, and Brian R Potetz, and Tai Sing Lee
November 2005, Journal of neurophysiology,
Jason M Samonds, and Brian R Potetz, and Tai Sing Lee
June 2004, Journal of neurophysiology,
Jason M Samonds, and Brian R Potetz, and Tai Sing Lee
August 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
Jason M Samonds, and Brian R Potetz, and Tai Sing Lee
May 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Jason M Samonds, and Brian R Potetz, and Tai Sing Lee
September 2009, Cerebral cortex (New York, N.Y. : 1991),
Jason M Samonds, and Brian R Potetz, and Tai Sing Lee
September 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Jason M Samonds, and Brian R Potetz, and Tai Sing Lee
May 1997, Nature,
Jason M Samonds, and Brian R Potetz, and Tai Sing Lee
March 1991, The Journal of comparative neurology,
Copied contents to your clipboard!