Biochemical and physiological aspects of endogenous androgens. 2010

Andrew T Kicman
Division of Pharmaceutical Science, Department of Forensic Science & Drug Monitoring (Drug Control Centre), King's College London, 150 Stamford Street, London, SE1 9NH, UK. andrew.kicman@kcl.ac.uk

This review attempts to give a synopsis of the major aspects concerning the biochemistry of endogenous androgens, supplemented with several facets of physiology, particularly with respect to testosterone. Testosterone continues to be the most common adverse finding declared by World Anti-Doping Agency accredited laboratories, such samples having an augmented testosterone to epitestosterone ratio. Knowledge regarding the precursors and metabolism of endogenous testosterone is therefore fundamental to understanding many of the issues concerning doping with testosterone and its prohormones, including the detection of their administration. Further, adverse findings for nandrolone are frequent, but this steroid and 19-norandrostenedione are also produced endogenously, an appealing hypothesis being that they are minor by-products of the aromatization of androgens. At sports tribunals pertaining to adverse analytical findings of natural androgen administration, experts often raise issues that concern some aspect of steroid biochemistry and physiology. Salient topics included within this review are the origins and interconversion of endogenous androgens, the biosynthesis of testosterone and epitestosterone, the mechanism of aromatization, the molecular biology of the androgen receptor, the hypothalamic-pituitary-testicular axis, disturbances to this axis by anabolic steroid administration, the transport (binding) of androgens in blood, and briefly the metabolism and excretion of androgens.

UI MeSH Term Description Entries
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D008297 Male Males
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000728 Androgens Compounds that interact with ANDROGEN RECEPTORS in target tissues to bring about the effects similar to those of TESTOSTERONE. Depending on the target tissues, androgenic effects can be on SEX DIFFERENTIATION; male reproductive organs, SPERMATOGENESIS; secondary male SEX CHARACTERISTICS; LIBIDO; development of muscle mass, strength, and power. Androgen,Androgen Receptor Agonist,Androgen Effect,Androgen Effects,Androgen Receptor Agonists,Androgenic Agents,Androgenic Compounds,Agents, Androgenic,Agonist, Androgen Receptor,Agonists, Androgen Receptor,Compounds, Androgenic,Effect, Androgen,Effects, Androgen,Receptor Agonist, Androgen,Receptor Agonists, Androgen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013737 Testis The male gonad containing two functional parts: the SEMINIFEROUS TUBULES for the production and transport of male germ cells (SPERMATOGENESIS) and the interstitial compartment containing LEYDIG CELLS that produce ANDROGENS. Testicles,Testes,Testicle

Related Publications

Andrew T Kicman
January 1993, International archives of occupational and environmental health,
Andrew T Kicman
July 1941, Bulletin of the New York Academy of Medicine,
Andrew T Kicman
March 1971, Israel journal of medical sciences,
Andrew T Kicman
November 2005, Reproductive biomedicine online,
Andrew T Kicman
January 2012, Sub-cellular biochemistry,
Andrew T Kicman
December 2011, Pathology oncology research : POR,
Andrew T Kicman
January 1964, Biologie medicale,
Andrew T Kicman
October 1976, Federation proceedings,
Andrew T Kicman
January 1988, Molecular aspects of medicine,
Andrew T Kicman
January 1984, La Ricerca in clinica e in laboratorio,
Copied contents to your clipboard!