Identification of ATP binding residues of a protein from its primary sequence. 2009

Jagat S Chauhan, and Nitish K Mishra, and Gajendra P S Raghava
Institute of Microbial Technology, Chandigarh, India. jagat@imtech.res.in

BACKGROUND One of the major challenges in post-genomic era is to provide functional annotations for large number of proteins arising from genome sequencing projects. The function of many proteins depends on their interaction with small molecules or ligands. ATP is one such important ligand that plays critical role as a coenzyme in the functionality of many proteins. There is a need to develop method for identifying ATP interacting residues in a ATP binding proteins (ABPs), in order to understand mechanism of protein-ligands interaction. RESULTS We have compared the amino acid composition of ATP interacting and non-interacting regions of proteins and observed that certain residues are preferred for interaction with ATP. This study describes few models that have been developed for identifying ATP interacting residues in a protein. All these models were trained and tested on 168 non-redundant ABPs chains. First we have developed a Support Vector Machine (SVM) based model using primary sequence of proteins and obtained maximum MCC 0.33 with accuracy of 66.25%. Secondly, another SVM based model was developed using position specific scoring matrix (PSSM) generated by PSI-BLAST. The performance of this model was improved significantly (MCC 0.5) from the previous one, where only the primary sequence of the proteins were used. CONCLUSIONS This study demonstrates that it is possible to predict 'ATP interacting residues' in a protein with moderate accuracy using its sequence. The evolutionary information is important for the identification of 'ATP interacting residues', as it provides more information compared to the primary sequence. This method will be useful for researchers studying ATP-binding proteins. Based on this study, a web server has been developed for predicting 'ATP interacting residues' in a protein http://www.imtech.res.in/raghava/atpint/.

UI MeSH Term Description Entries
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations
D019295 Computational Biology A field of biology concerned with the development of techniques for the collection and manipulation of biological data, and the use of such data to make biological discoveries or predictions. This field encompasses all computational methods and theories for solving biological problems including manipulation of models and datasets. Bioinformatics,Molecular Biology, Computational,Bio-Informatics,Biology, Computational,Computational Molecular Biology,Bio Informatics,Bio-Informatic,Bioinformatic,Biologies, Computational Molecular,Biology, Computational Molecular,Computational Molecular Biologies,Molecular Biologies, Computational
D020539 Sequence Analysis, Protein A process that includes the determination of AMINO ACID SEQUENCE of a protein (or peptide, oligopeptide or peptide fragment) and the information analysis of the sequence. Amino Acid Sequence Analysis,Peptide Sequence Analysis,Protein Sequence Analysis,Sequence Determination, Protein,Amino Acid Sequence Analyses,Amino Acid Sequence Determination,Amino Acid Sequence Determinations,Amino Acid Sequencing,Peptide Sequence Determination,Protein Sequencing,Sequence Analyses, Amino Acid,Sequence Analysis, Amino Acid,Sequence Analysis, Peptide,Sequence Determination, Amino Acid,Sequence Determinations, Amino Acid,Acid Sequencing, Amino,Analyses, Peptide Sequence,Analyses, Protein Sequence,Analysis, Peptide Sequence,Analysis, Protein Sequence,Peptide Sequence Analyses,Peptide Sequence Determinations,Protein Sequence Analyses,Protein Sequence Determination,Protein Sequence Determinations,Sequence Analyses, Peptide,Sequence Analyses, Protein,Sequence Determination, Peptide,Sequence Determinations, Peptide,Sequence Determinations, Protein,Sequencing, Amino Acid,Sequencing, Protein
D030562 Databases, Protein Databases containing information about PROTEINS such as AMINO ACID SEQUENCE; PROTEIN CONFORMATION; and other properties. Amino Acid Sequence Databases,Databases, Amino Acid Sequence,Protein Databases,Protein Sequence Databases,SWISS-PROT,Protein Structure Databases,SwissProt,Database, Protein,Database, Protein Sequence,Database, Protein Structure,Databases, Protein Sequence,Databases, Protein Structure,Protein Database,Protein Sequence Database,Protein Structure Database,SWISS PROT,Sequence Database, Protein,Sequence Databases, Protein,Structure Database, Protein,Structure Databases, Protein

Related Publications

Jagat S Chauhan, and Nitish K Mishra, and Gajendra P S Raghava
May 2016, Genetics and molecular research : GMR,
Jagat S Chauhan, and Nitish K Mishra, and Gajendra P S Raghava
March 2011, Proceedings of the National Academy of Sciences of the United States of America,
Jagat S Chauhan, and Nitish K Mishra, and Gajendra P S Raghava
October 2011, Proteome science,
Jagat S Chauhan, and Nitish K Mishra, and Gajendra P S Raghava
January 2010, BMC bioinformatics,
Jagat S Chauhan, and Nitish K Mishra, and Gajendra P S Raghava
January 2020, Protein science : a publication of the Protein Society,
Jagat S Chauhan, and Nitish K Mishra, and Gajendra P S Raghava
December 2005, Journal of bioenergetics and biomembranes,
Jagat S Chauhan, and Nitish K Mishra, and Gajendra P S Raghava
January 1987, Journal of biochemistry,
Jagat S Chauhan, and Nitish K Mishra, and Gajendra P S Raghava
January 1991, Peptide research,
Jagat S Chauhan, and Nitish K Mishra, and Gajendra P S Raghava
May 2012, BMC bioinformatics,
Jagat S Chauhan, and Nitish K Mishra, and Gajendra P S Raghava
June 2003, The EMBO journal,
Copied contents to your clipboard!