PreDisorder: ab initio sequence-based prediction of protein disordered regions. 2009

Xin Deng, and Jesse Eickholt, and Jianlin Cheng
Department of Computer Science, University of Missouri-Columbia, Columbia, MO 65211, USA. xd9d3@mail.missouri.edu

BACKGROUND Disordered regions are segments of the protein chain which do not adopt stable structures. Such segments are often of interest because they have a close relationship with protein expression and functionality. As such, protein disorder prediction is important for protein structure prediction, structure determination and function annotation. RESULTS This paper presents our protein disorder prediction server, PreDisorder. It is based on our ab initio prediction method (MULTICOM-CMFR) which, along with our meta (or consensus) prediction method (MULTICOM), was recently ranked among the top disorder predictors in the eighth edition of the Critical Assessment of Techniques for Protein Structure Prediction (CASP8). We systematically benchmarked PreDisorder along with 26 other protein disorder predictors on the CASP8 data set and assessed its accuracy using a number of measures. The results show that it compared favourably with other ab initio methods and its performance is comparable to that of the best meta and clustering methods. CONCLUSIONS PreDisorder is a fast and reliable server which can be used to predict protein disordered regions on genomic scale. It is available at http://casp.rnet.missouri.edu/predisorder.html.

UI MeSH Term Description Entries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D012984 Software Sequential operating programs and data which instruct the functioning of a digital computer. Computer Programs,Computer Software,Open Source Software,Software Engineering,Software Tools,Computer Applications Software,Computer Programs and Programming,Computer Software Applications,Application, Computer Software,Applications Software, Computer,Applications Softwares, Computer,Applications, Computer Software,Computer Applications Softwares,Computer Program,Computer Software Application,Engineering, Software,Open Source Softwares,Program, Computer,Programs, Computer,Software Application, Computer,Software Applications, Computer,Software Tool,Software, Computer,Software, Computer Applications,Software, Open Source,Softwares, Computer Applications,Softwares, Open Source,Source Software, Open,Source Softwares, Open,Tool, Software,Tools, Software
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures
D017510 Protein Folding Processes involved in the formation of TERTIARY PROTEIN STRUCTURE. Protein Folding, Globular,Folding, Globular Protein,Folding, Protein,Foldings, Globular Protein,Foldings, Protein,Globular Protein Folding,Globular Protein Foldings,Protein Foldings,Protein Foldings, Globular
D020539 Sequence Analysis, Protein A process that includes the determination of AMINO ACID SEQUENCE of a protein (or peptide, oligopeptide or peptide fragment) and the information analysis of the sequence. Amino Acid Sequence Analysis,Peptide Sequence Analysis,Protein Sequence Analysis,Sequence Determination, Protein,Amino Acid Sequence Analyses,Amino Acid Sequence Determination,Amino Acid Sequence Determinations,Amino Acid Sequencing,Peptide Sequence Determination,Protein Sequencing,Sequence Analyses, Amino Acid,Sequence Analysis, Amino Acid,Sequence Analysis, Peptide,Sequence Determination, Amino Acid,Sequence Determinations, Amino Acid,Acid Sequencing, Amino,Analyses, Peptide Sequence,Analyses, Protein Sequence,Analysis, Peptide Sequence,Analysis, Protein Sequence,Peptide Sequence Analyses,Peptide Sequence Determinations,Protein Sequence Analyses,Protein Sequence Determination,Protein Sequence Determinations,Sequence Analyses, Peptide,Sequence Analyses, Protein,Sequence Determination, Peptide,Sequence Determinations, Peptide,Sequence Determinations, Protein,Sequencing, Amino Acid,Sequencing, Protein
D030562 Databases, Protein Databases containing information about PROTEINS such as AMINO ACID SEQUENCE; PROTEIN CONFORMATION; and other properties. Amino Acid Sequence Databases,Databases, Amino Acid Sequence,Protein Databases,Protein Sequence Databases,SWISS-PROT,Protein Structure Databases,SwissProt,Database, Protein,Database, Protein Sequence,Database, Protein Structure,Databases, Protein Sequence,Databases, Protein Structure,Protein Database,Protein Sequence Database,Protein Structure Database,SWISS PROT,Sequence Database, Protein,Sequence Databases, Protein,Structure Database, Protein,Structure Databases, Protein
D040901 Proteomics The systematic study of the complete complement of proteins (PROTEOME) of organisms. Peptidomics

Related Publications

Xin Deng, and Jesse Eickholt, and Jianlin Cheng
January 2023, Bioinformatics advances,
Xin Deng, and Jesse Eickholt, and Jianlin Cheng
April 2002, Current opinion in structural biology,
Xin Deng, and Jesse Eickholt, and Jianlin Cheng
July 2007, Nucleic acids research,
Xin Deng, and Jesse Eickholt, and Jianlin Cheng
November 2008, Proteins,
Xin Deng, and Jesse Eickholt, and Jianlin Cheng
January 2002, TheScientificWorldJournal,
Xin Deng, and Jesse Eickholt, and Jianlin Cheng
March 2013, Protein and peptide letters,
Xin Deng, and Jesse Eickholt, and Jianlin Cheng
June 2002, Proteins,
Xin Deng, and Jesse Eickholt, and Jianlin Cheng
February 2020, Bioinformatics (Oxford, England),
Xin Deng, and Jesse Eickholt, and Jianlin Cheng
January 2000, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!