Trunk muscle activation during moderate- and high-intensity running. 2009

David G Behm, and Dario Cappa, and Geoffrey A Power
School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada. dbehm@mun.ca

Time constraints are cited as a barrier to regular exercise. If particular exercises can achieve multiple training functions, the number of exercises and the time needed to achieve a training goal may be decreased. It was the objective of this study to compare the extent of trunk muscle electromyographic (EMG) activity during running and callisthenic activities. EMG activity of the external obliques, lower abdominals (LA), upper lumbar erector spinae (ULES), and lumbosacral erector spinae (LSES) was monitored while triathletes and active nonrunners ran on a treadmill for 30 min at 60% and 80% of their maximum heart rate (HR) reserve, as well as during 30 repetitions of a partial curl-up and 3 min of a modified Biering-Sørensen back extension exercise. The mean root mean square (RMS) amplitude of the EMG signal was monitored over 10-s periods with measures normalized to a maximum voluntary contraction rotating curl-up (external obliques), hollowing exercise (LA), or back extension (ULES and LSES). A main effect for group was that triathletes had greater overall activation of the external obliques (p < 0.05), LA (p = 0.01), and LSES (p < 0.05) than did nonrunners. Main effects for exercise type showed that the external obliques had less EMG activity during 60% and 80% runs, respectively, than with the curl-ups (p = 0.001). The back extension exercise provided less ULES (p = 0.009) and LSES (p = 0.0001) EMG activity than the 60% and 80% runs, respectively. In conclusion, triathletes had greater trunk activation than nonrunners did while running, which could have contributed to their better performance. Back-stabilizing muscles can be activated more effectively with running than with a prolonged back extension activity. Running can be considered as an efficient, multifunctional exercise combining cardiovascular and trunk endurance benefits.

UI MeSH Term Description Entries
D010809 Physical Fitness The ability to carry out daily tasks and perform physical activities in a highly functional state, often as a result of physical conditioning. Fitness, Physical
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D005080 Exercise Test Controlled physical activity which is performed in order to allow assessment of physiological functions, particularly cardiovascular and pulmonary, but also aerobic capacity. Maximal (most intense) exercise is usually required but submaximal exercise is also used. Arm Ergometry Test,Bicycle Ergometry Test,Cardiopulmonary Exercise Testing,Exercise Testing,Step Test,Stress Test,Treadmill Test,Cardiopulmonary Exercise Test,EuroFit Tests,Eurofit Test Battery,European Fitness Testing Battery,Fitness Testing,Physical Fitness Testing,Arm Ergometry Tests,Bicycle Ergometry Tests,Cardiopulmonary Exercise Tests,Ergometry Test, Arm,Ergometry Test, Bicycle,Ergometry Tests, Arm,Ergometry Tests, Bicycle,EuroFit Test,Eurofit Test Batteries,Exercise Test, Cardiopulmonary,Exercise Testing, Cardiopulmonary,Exercise Tests,Exercise Tests, Cardiopulmonary,Fitness Testing, Physical,Fitness Testings,Step Tests,Stress Tests,Test Battery, Eurofit,Test, Arm Ergometry,Test, Bicycle Ergometry,Test, Cardiopulmonary Exercise,Test, EuroFit,Test, Exercise,Test, Step,Test, Stress,Test, Treadmill,Testing, Cardiopulmonary Exercise,Testing, Exercise,Testing, Fitness,Testing, Physical Fitness,Tests, Arm Ergometry,Tests, Bicycle Ergometry,Tests, Cardiopulmonary Exercise,Tests, EuroFit,Tests, Exercise,Tests, Step,Tests, Stress,Tests, Treadmill,Treadmill Tests
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000009 Abdominal Muscles Muscles forming the ABDOMINAL WALL including RECTUS ABDOMINIS; ABDOMINAL OBLIQUE MUSCLES, transversus abdominis, pyramidalis muscles and quadratus abdominis. Cremaster Muscle,Pyramidalis Muscle,Quadratus Abdominis,Transverse Abdominal,Transversus Abdominis,Abdominal Muscle,Abdominal, Transverse,Abdominals, Transverse,Abdomini, Quadratus,Abdominis, Quadratus,Cremaster Muscles,Muscle, Abdominal,Muscle, Cremaster,Muscle, Pyramidalis,Muscles, Abdominal,Muscles, Cremaster,Muscles, Pyramidalis,Pyramidalis Muscles,Quadratus Abdomini,Transverse Abdominals
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D012420 Running An activity in which the body is propelled by moving the legs rapidly. Running is performed at a moderate to rapid pace and should be differentiated from JOGGING, which is performed at a much slower pace. Runnings
D013177 Sports Activities or games, usually involving physical effort or skill. Reasons for engagement in sports include pleasure, competition, and/or financial reward. Athletics,Athletic,Sport

Related Publications

David G Behm, and Dario Cappa, and Geoffrey A Power
March 2018, Journal of biomechanics,
David G Behm, and Dario Cappa, and Geoffrey A Power
September 2019, Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme,
David G Behm, and Dario Cappa, and Geoffrey A Power
December 2014, Journal of neuroengineering and rehabilitation,
David G Behm, and Dario Cappa, and Geoffrey A Power
November 2021, Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme,
David G Behm, and Dario Cappa, and Geoffrey A Power
September 2020, Medicine and science in sports and exercise,
David G Behm, and Dario Cappa, and Geoffrey A Power
June 2004, Perceptual and motor skills,
David G Behm, and Dario Cappa, and Geoffrey A Power
September 1999, Medicine and science in sports and exercise,
David G Behm, and Dario Cappa, and Geoffrey A Power
February 2019, Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology,
David G Behm, and Dario Cappa, and Geoffrey A Power
April 2020, Scientific reports,
David G Behm, and Dario Cappa, and Geoffrey A Power
October 2013, Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology,
Copied contents to your clipboard!