Circulating endothelin influences area postrema neurons. 1991

A V Ferguson, and P Smith
Department of Physiology, Queen's University, Kingston, Ontario, Canada.

The recently described endothelium-derived constricting factor endothelin (ET) is a 21 amino acid peptide which is the most potent endogenous vasoconstrictor yet described. Binding sites for this peptide have been demonstrated within the circumventricular structures of the brain. One of these structures, the area postrema (AP), has been implicated in central cardiovascular control mechanisms. We have recently demonstrated that microinjection of ET into this structure results in dose-dependent changes in mean arterial blood pressure. The present studies were undertaken to test the hypothesis that ET elicits these effects as a result of influences on the activity of AP neurons. Using extracellular single unit recording techniques we have examined the effects of systemic administration of ET on the activity of AP neurons. A total of 60 AP neurons were tested for effects of ET (0.1-10.0 pmol) of which the spontaneous activity of 32 showed rapid (modified frequency of action potentials in the 60s following ET), reversible (return to baseline activity within 10 m) responses to this peptide. The initial response of the majority (84%) of AP neurons influenced by ET was excitatory, while a smaller proportion of AP neurons were inhibited (16%) by systemic administration of this peptide. We have also examined whether such excitatory effects were specific to AP neurons by comparing the above response characteristics to those observed in neurons in the adjacent commissural NTS. Such recordings demonstrated predominantly inhibitory (84% of influenced cells) responses of this group of NTS neurons to ET. While these findings demonstrate specific excitatory effects of systemic ET on the activity of AP neurons they also suggest a potential role for this peptide in controlling the activity of NTS neurons. These studies provide evidence that circulating ET influences AP neuronal function, although they offer no definitive information as to the specific site of action.

UI MeSH Term Description Entries
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016232 Endothelins 21-Amino-acid peptides produced by vascular endothelial cells and functioning as potent vasoconstrictors. The endothelin family consists of three members, ENDOTHELIN-1; ENDOTHELIN-2; and ENDOTHELIN-3. All three peptides contain 21 amino acids, but vary in amino acid composition. The three peptides produce vasoconstrictor and pressor responses in various parts of the body. However, the quantitative profiles of the pharmacological activities are considerably different among the three isopeptides. Endothelium-Derived Vasoconstrictor Factors,Endothelin,Vasoconstrictor Factors, Endothelium-Derived
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

A V Ferguson, and P Smith
April 2003, Regulatory peptides,
A V Ferguson, and P Smith
December 1995, Brain research,
A V Ferguson, and P Smith
February 1999, The American journal of physiology,
A V Ferguson, and P Smith
March 2009, American journal of physiology. Regulatory, integrative and comparative physiology,
A V Ferguson, and P Smith
August 1995, The American journal of physiology,
A V Ferguson, and P Smith
April 1985, Neuroscience letters,
A V Ferguson, and P Smith
September 2006, Purinergic signalling,
A V Ferguson, and P Smith
May 1997, The American journal of physiology,
A V Ferguson, and P Smith
January 1994, Acta anatomica,
Copied contents to your clipboard!