Lower energy cost of skeletal muscle contractions in older humans. 2010

Michael A Tevald, and Stephen A Foulis, and Ian R Lanza, and Jane A Kent-Braun
Department of Kinesiology, University of Massachusetts, Amherst, Massachusett 01003, USA.

Recent studies suggest that the cost of muscle contraction may be reduced in old age, which could be an important mediator of age-related differences in muscle fatigue under some circumstances. We used phosphorus magnetic resonance spectroscopy and electrically elicited contractions to examine the energetic cost of ankle dorsiflexion in 9 young (Y; 26 +/- 3.8 yr; mean +/- SD) and 9 older healthy men (O; 72 +/- 4.6). We hypothesized that the energy cost of twitch and tetanic contractions would be lower in O and that this difference would be greater during tetanic contractions at f(50) (frequency at 50% of peak force from force-frequency relationship) than at 25 Hz. The energy costs of a twitch (O = 0.13 +/- 0.04 mM ATP/twitch, Y = 0.18 +/- 0.06; P = 0.045) and a 60-s tetanus at 25 Hz (O = 1.5 +/- 0.4 mM ATP/s, Y = 2.0 +/- 0.2; P = 0.01) were 27% and 26% lower in O, respectively, while the respective force.time integrals were not different. In contrast, energy cost during a 90-s tetanus at f(50) (O = 10.9 +/- 2.0 Hz, Y = 14.8 +/- 2.1 Hz; P = 0.002) was 49% lower in O (1.0 +/- 0.2 mM ATP/s) compared with Y (1.9 +/- 0.2; P < 0.001). Y had greater force potentiation during the f(50) protocol, which accounted for the greater age difference in energy cost at f(50) compared with 25 Hz. These results provide novel evidence of an age-related difference in human contractile energy cost in vivo and suggest that intramuscular changes contribute to the lower cost of contraction in older muscle. This difference in energetics may provide an important mechanism for the enhanced fatigue resistance often observed in older individuals.

UI MeSH Term Description Entries
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010725 Phosphocreatine An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996) Creatine Phosphate,Neoton,Phosphocreatine, Disodium Salt,Phosphorylcreatine,Disodium Salt Phosphocreatine,Phosphate, Creatine
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

Michael A Tevald, and Stephen A Foulis, and Ian R Lanza, and Jane A Kent-Braun
January 1969, Pflugers Archiv : European journal of physiology,
Michael A Tevald, and Stephen A Foulis, and Ian R Lanza, and Jane A Kent-Braun
February 1988, Canadian journal of physiology and pharmacology,
Michael A Tevald, and Stephen A Foulis, and Ian R Lanza, and Jane A Kent-Braun
November 2008, Journal of applied physiology (Bethesda, Md. : 1985),
Michael A Tevald, and Stephen A Foulis, and Ian R Lanza, and Jane A Kent-Braun
January 2015, Frontiers in physiology,
Michael A Tevald, and Stephen A Foulis, and Ian R Lanza, and Jane A Kent-Braun
July 2004, Journal of applied physiology (Bethesda, Md. : 1985),
Michael A Tevald, and Stephen A Foulis, and Ian R Lanza, and Jane A Kent-Braun
November 1997, Journal of applied physiology (Bethesda, Md. : 1985),
Michael A Tevald, and Stephen A Foulis, and Ian R Lanza, and Jane A Kent-Braun
April 1992, Journal of applied physiology (Bethesda, Md. : 1985),
Michael A Tevald, and Stephen A Foulis, and Ian R Lanza, and Jane A Kent-Braun
April 1986, The American journal of physiology,
Michael A Tevald, and Stephen A Foulis, and Ian R Lanza, and Jane A Kent-Braun
January 1983, European journal of applied physiology and occupational physiology,
Michael A Tevald, and Stephen A Foulis, and Ian R Lanza, and Jane A Kent-Braun
March 2007, American journal of physiology. Endocrinology and metabolism,
Copied contents to your clipboard!