Down-regulation of S1P1 receptor surface expression by protein kinase C inhibition. 2010

Sven-Christian Sensken, and Markus H Gräler
Institute for Immunology, Hannover Medical School, 30625 Hanover, Germany.

The sphingosine 1-phosphate receptor type 1 (S1P(1)) is important for the maintenance of lymphocyte circulation. S1P(1) receptor surface expression on lymphocytes is critical for their egress from thymus and lymph nodes. Premature activation-induced internalization of the S1P(1) receptor in lymphoid organs, mediated either by pharmacological agonists or by inhibition of the S1P degrading enzyme S1P-lyase, blocks lymphocyte egress and induces lymphopenia in blood and lymph. Regulation of S1P(1) receptor surface expression is therefore a promising way to control adaptive immunity. Hence, we analyzed potential cellular targets for their ability to alter S1P(1) receptor surface expression without stimulation. The initial observation that preincubation of mouse splenocytes with its natural analog sphingosine was sufficient to block Transwell chemotaxis to S1P directed subsequent investigations to the underlying mechanism. Sphingosine is known to inhibit protein kinase C (PKC), and PKC inhibition with nanomolar concentrations of staurosporine, calphostin C, and GF109203X down-regulated surface expression of S1P(1) but not S1P(4) in transfected rat hepatoma HTC(4) cells. The PKC activator phorbol 12-myristate 13-acetate partially rescued FTY720-induced down-regulation of the S1P(1) receptor, linking PKC activation with S1P(1) receptor surface expression. FTY720, but not FTY720 phosphate, efficiently inhibited PKC. Cell-based efficacy was obvious with 10 nm FTY720, and in vivo treatment of mice with 0.3-3 mg/kg/day FTY720 showed increasing concentration-dependent effectiveness. PKC inhibition therefore may contribute to lymphopenia by down-regulating S1P(1) receptor cell surface expression independently from its activation.

UI MeSH Term Description Entries
D007109 Immunity Nonsusceptibility to the invasive or pathogenic effects of foreign microorganisms or to the toxic effect of antigenic substances. Immune Process,Immune Response,Immune Processes,Immune Responses,Process, Immune,Response, Immune
D008231 Lymphopenia Reduction in the number of lymphocytes. Lymphocytopenia,Lymphocytopenias,Lymphopenias
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013110 Sphingosine An amino alcohol with a long unsaturated hydrocarbon chain. Sphingosine and its derivative sphinganine are the major bases of the sphingolipids in mammals. (Dorland, 28th ed) 4-Sphingenine,4 Sphingenine
D013154 Spleen An encapsulated lymphatic organ through which venous blood filters.
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor
D047428 Protein Kinase Inhibitors Agents that inhibit PROTEIN KINASES. Protein Kinase Inhibitor,Inhibitor, Protein Kinase,Inhibitors, Protein Kinase,Kinase Inhibitor, Protein,Kinase Inhibitors, Protein
D049349 Receptors, Lysosphingolipid A subfamily of lysophospholipid receptors with specificity for LYSOSPHINGOLIPIDS such as sphingosine-1-phosphate and sphingosine phosphorylcholine. Lysosphingolipid Receptors,Lysosphingolipid Receptor,Receptor, Lysosphingolipid

Related Publications

Sven-Christian Sensken, and Markus H Gräler
December 2004, The Journal of biological chemistry,
Sven-Christian Sensken, and Markus H Gräler
January 2006, Microbiology and immunology,
Sven-Christian Sensken, and Markus H Gräler
July 2003, The Journal of biological chemistry,
Sven-Christian Sensken, and Markus H Gräler
December 1994, The Journal of biological chemistry,
Sven-Christian Sensken, and Markus H Gräler
December 1996, Journal of immunology (Baltimore, Md. : 1950),
Sven-Christian Sensken, and Markus H Gräler
June 1990, International journal of cancer,
Sven-Christian Sensken, and Markus H Gräler
February 1998, Journal of immunology (Baltimore, Md. : 1950),
Sven-Christian Sensken, and Markus H Gräler
December 2005, Neurochemistry international,
Sven-Christian Sensken, and Markus H Gräler
March 1989, The Journal of biological chemistry,
Copied contents to your clipboard!