Position of the general transcription factor TFIIF within the RNA polymerase II transcription preinitiation complex. 2010

Jesse Eichner, and Hung-Ta Chen, and Linda Warfield, and Steven Hahn
Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.

The RNA polymerase (pol) II general transcription factor TFIIF functions at several steps in transcription initiation including preinitiation complex (PIC) formation and start site selection. We find that two structured TFIIF domains bind Pol II at separate locations far from the active site with the TFIIF dimerization domain on the Pol II lobe and the winged helix domain of the TFIIF small subunit Tfg2 above the Pol II protrusion where it may interact with upstream promoter DNA. Binding of the winged helix to the protrusion is PIC specific. Anchoring of these two structured TFIIF domains at separate sites locates an essential and unstructured region of Tfg2 near the Pol II active site cleft where it may interact with flexible regions of Pol II and the general factor TFIIB to promote initiation and start site selection. Consistent with this mechanism, mutations far from the enzyme active site, which alter the binding of either structured TFIIF domains to Pol II, have similar defects in transcription start site usage.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012319 RNA Polymerase II A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6. DNA-Dependent RNA Polymerase II,RNA Pol II,RNA Polymerase B,DNA Dependent RNA Polymerase II
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures
D046912 Multiprotein Complexes Macromolecular complexes formed from the association of defined protein subunits. Macromolecular Protein Complexes,Complexes, Macromolecular Protein,Complexes, Multiprotein,Protein Complexes, Macromolecular

Related Publications

Jesse Eichner, and Hung-Ta Chen, and Linda Warfield, and Steven Hahn
August 2007, Nature structural & molecular biology,
Jesse Eichner, and Hung-Ta Chen, and Linda Warfield, and Steven Hahn
November 1997, Proceedings of the National Academy of Sciences of the United States of America,
Jesse Eichner, and Hung-Ta Chen, and Linda Warfield, and Steven Hahn
November 1991, Proceedings of the National Academy of Sciences of the United States of America,
Jesse Eichner, and Hung-Ta Chen, and Linda Warfield, and Steven Hahn
November 2015, Proceedings of the National Academy of Sciences of the United States of America,
Jesse Eichner, and Hung-Ta Chen, and Linda Warfield, and Steven Hahn
October 2007, Proceedings of the National Academy of Sciences of the United States of America,
Jesse Eichner, and Hung-Ta Chen, and Linda Warfield, and Steven Hahn
February 1995, Molecular and cellular biology,
Jesse Eichner, and Hung-Ta Chen, and Linda Warfield, and Steven Hahn
April 2004, Current opinion in structural biology,
Jesse Eichner, and Hung-Ta Chen, and Linda Warfield, and Steven Hahn
March 2013, The Journal of biological chemistry,
Jesse Eichner, and Hung-Ta Chen, and Linda Warfield, and Steven Hahn
April 2012, Journal of molecular biology,
Copied contents to your clipboard!