Neutrophil and Kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver. 1991

H Jaeschke, and A Farhood
Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

The hypothesis that Kupffer cells and infiltrating neutrophils generate reactive oxygen in the hepatic sinusoids and may contribute to ischemia-reperfusion injury in the liver was investigated in a model of partial no-flow ischemia and reperfusion in male Fischer rats in vivo. During the reperfusion period of 60 min, plasma concentrations of glutathione disulfide (GSSG; index of oxidant stress) increased from 1.62 +/- 0.20 microM glutathione (GSH) equivalents to maximal values of 11.82 +/- 1.45 (45 min ischemia), 24.19 +/- 2.35 (60 min ischemia), and 70.20 +/- 7.8 (120 min ischemia). The basal tissue GSSG content in the postischemic lobes (0.19 +/- 0.02 nmol GSH eq/mg protein) increased by 50-100%. Although the number of neutrophils in liver and lung increased by 3- to 10-fold during reperfusion, there was no positive correlation between the number of neutrophils and the GSSG concentrations measured in plasma or tissue. However, activation of Kupffer cells with high doses of retinol or with Propionibacterium acnes significantly enhanced plasma GSSG levels, while inactivation of Kupffer cells with methyl palmitate or gadolinium chloride significantly attenuated the increase of plasma GSSG. Inactivation of Kupffer cells protected the liver significantly against ischemia-reperfusion injury. It is concluded that Kupffer cells are the predominant source of reactive oxygen formed during the initial reperfusion period and that Kupffer cell activity (including reactive oxygen formation) contributes to reperfusion injury in the liver in vivo.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007728 Kupffer Cells Specialized phagocytic cells of the MONONUCLEAR PHAGOCYTE SYSTEM found on the luminal surface of the hepatic sinusoids. They filter bacteria and small foreign proteins out of the blood and dispose of worn out red blood cells. Kupffer Cell,Cell, Kupffer,Cells, Kupffer
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008102 Liver Circulation The circulation of BLOOD through the LIVER. Hepatic Circulation,Circulation, Liver,Circulation, Hepatic
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D009392 Nephrectomy Excision of kidney. Heminephrectomy,Heminephrectomies,Nephrectomies
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer

Related Publications

H Jaeschke, and A Farhood
December 1999, Hepatology (Baltimore, Md.),
H Jaeschke, and A Farhood
February 1991, Transplantation proceedings,
H Jaeschke, and A Farhood
May 1999, The American journal of physiology,
H Jaeschke, and A Farhood
July 1995, Gastroenterology,
H Jaeschke, and A Farhood
January 1991, Free radical research communications,
H Jaeschke, and A Farhood
December 2002, World journal of gastroenterology,
H Jaeschke, and A Farhood
December 1991, The Journal of surgical research,
Copied contents to your clipboard!