Chicken embryonic stem cells as a non-mammalian embryonic stem cell model. 2010

Fabrice Lavial, and Bertrand Pain
Institut de Génomique Fonctionnelle de Lyon, Université Lyon 1, ENS Lyon, CNRS, UMR5242, INRA, UMR1288, F-69007 Lyon.

Embryonic stem cells (ESCs) were isolated in the early 1980s from mouse and in the late 1990s from primate and human. These cells present the unique property of self-renewal and the ability to generate differentiated progeny in all embryonic lineages both in vitro and in vivo. The mESCs (mouse embryonic stem cells) can contribute to both somatic and germinal lineages once re-injected into a recipient embryo at the blastocyst stage. In avian species, chicken embryonic stem cells (cESCs) have been isolated from the in vitro culture of early chicken blastodermal cells (cBCs) taken from stage X embryo (EG&K) These cESCs can be maintained under specific culture conditions and have been characterized on the basis of their morphology, biochemical features, in vitro differentiation potentialities and in vivo morphogenetic properties. The relationship between these cESCs and some of the chicken germ cells identified and grown under specific culture conditions are still under debate, in particular with the identification of the Cvh gene as a key factor for germ cell determination. Moreover, by cloning the avian homologue of the Oct4 mammalian gene, we have demonstrated that this gene, as well as the chicken Nanog gene, was involved in the characterization and maintenance of the chicken pluripotency. These first steps toward the understanding of pluripotency control in a non-mammalian species opens the way for the development and characterization of putative new cell types such as chicken EpiSC and raises the question of the existence of reprogramming in avian species. These different points are discussed.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D050814 Octamer Transcription Factor-3 An octamer transcription factor that is expressed primarily in totipotent embryonic STEM CELLS and GERM CELLS and is down-regulated during CELL DIFFERENTIATION. Oct-3 Transcription Factor,Transcription Factor Oct-3,Oct-4 Transcription Factor,Octamer-Binding Protein 4,POU Domain, Class 5, Transcription Factor 1,POU5F1 Transcription Factor,Transcription Factor Oct-4,Oct 3 Transcription Factor,Oct 4 Transcription Factor,Oct-3, Transcription Factor,Oct-4, Transcription Factor,Octamer Binding Protein 4,Octamer Transcription Factor 3,Transcription Factor Oct 3,Transcription Factor Oct 4,Transcription Factor, Oct-3,Transcription Factor, Oct-4,Transcription Factor, POU5F1,Transcription Factor-3, Octamer
D053595 Embryonic Stem Cells Cells derived from the BLASTOCYST INNER CELL MASS which forms before implantation in the uterine wall. They retain the ability to divide, proliferate and provide progenitor cells that can differentiate into specialized cells. Stem Cells, Embryonic,Cell, Embryonic Stem,Cells, Embryonic Stem,Embryonic Stem Cell,Stem Cell, Embryonic
D018398 Homeodomain Proteins Proteins encoded by homeobox genes (GENES, HOMEOBOX) that exhibit structural similarity to certain prokaryotic and eukaryotic DNA-binding proteins. Homeodomain proteins are involved in the control of gene expression during morphogenesis and development (GENE EXPRESSION REGULATION, DEVELOPMENTAL). Homeo Domain Protein,Homeobox Protein,Homeobox Proteins,Homeodomain Protein,Homeoprotein,Homeoproteins,Homeotic Protein,Homeo Domain Proteins,Homeotic Proteins,Domain Protein, Homeo,Protein, Homeo Domain,Protein, Homeobox,Protein, Homeodomain,Protein, Homeotic,Proteins, Homeo Domain,Proteins, Homeobox,Proteins, Homeodomain,Proteins, Homeotic
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic
D039904 Pluripotent Stem Cells Cells that can give rise to cells of the three different GERM LAYERS. Stem Cells, Pluripotent,Pluripotent Stem Cell,Stem Cell, Pluripotent

Related Publications

Fabrice Lavial, and Bertrand Pain
March 2013, Molecular biology reports,
Fabrice Lavial, and Bertrand Pain
January 2009, Tsitologiia,
Fabrice Lavial, and Bertrand Pain
January 1992, Trends in cardiovascular medicine,
Fabrice Lavial, and Bertrand Pain
November 2011, Immunobiology,
Fabrice Lavial, and Bertrand Pain
January 2013, Methods in molecular biology (Clifton, N.J.),
Fabrice Lavial, and Bertrand Pain
January 1999, Cells, tissues, organs,
Fabrice Lavial, and Bertrand Pain
September 2010, Science China. Life sciences,
Fabrice Lavial, and Bertrand Pain
May 2009, Regenerative medicine,
Fabrice Lavial, and Bertrand Pain
November 2006, Seminars in reproductive medicine,
Copied contents to your clipboard!