Production and characterization of recombinant pertactin, fimbriae 2 and fimbriae 3 from Bordetella pertussis. 2009

Yinghua Xu, and Yaying Wang, and Yajun Tan, and Huajie Zhang, and Lijie Wu, and Lichan Wang, and Qiming Hou, and Shumin Zhang
Department of serum, National Institute for the Control of Pharmaceutical and Biological Products, Temple of Heaven, Beijing 100050, PR China. jxyhxyh@yahoo.com.cn

BACKGROUND Bordetella pertussis is a causative agent of pertussis or whooping cough in humans. Pertactin (Prn), fimbriae 2 (Fim2) and fimbriae 3 (Fim3) of B. pertussis are important virulence factors and immunogens which have been included in some acellular pertussis vaccines. In this present study, we cloned, expressed and purified Prn, Fim2 and Fim3, respectively. The immunogenicity and protective efficacy of the three recombinant proteins (rPrn, rFim2 and rFim3) were investigated in mouse model. RESULTS Three recombinant proteins with amount of 12 to 25 mg/L were produced. Compared to the control mice only immunized with adjuvant, serum IgG antibody responses were significantly induced in the mice immunized with rPrn, rFim2 or rFim3 (P < 0.001 for all three proteins). Furthermore, T cell responses characteristic of increased production of IL-2 and TNF-alpha (only for rPrn) were elicited in the mice immunized with the three proteins (P < 0.05 for all three proteins). Immunization with rPrn, but not with rFim2 or rFim3, significantly enhanced clearance of bacteria in the lungs of mice after intranasal challenge with B. pertussis (P < 0.05). When tested in a lethal intracerebral infection model, certain protection was observed in mice immunized with rPrn. CONCLUSIONS We have developed an efficient method to produce large amounts of rPrn, rFim2, and rFim3 from B. pertussis. The three recombinant proteins induced both humoral and cellular immune responses in mice. Immunization with rPrn also conferred protection against pertussis in mouse infection models. Our results indicated that the recombinant proteins still retain their immunological properties and highlighted the potential of the recombinant proteins for the future development of the B. pertussis vaccines.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008297 Male Males
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D010567 Pertussis Vaccine A suspension of killed Bordetella pertussis organisms, used for immunization against pertussis (WHOOPING COUGH). It is generally used in a mixture with diphtheria and tetanus toxoids (DTP). There is an acellular pertussis vaccine prepared from the purified antigenic components of Bordetella pertussis, which causes fewer adverse reactions than whole-cell vaccine and, like the whole-cell vaccine, is generally used in a mixture with diphtheria and tetanus toxoids. (From Dorland, 28th ed) Vaccine, Pertussis
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001886 Bordetella pertussis A species of gram-negative, aerobic bacteria that is the causative agent of WHOOPING COUGH. Its cells are minute coccobacilli that are surrounded by a slime sheath. Bacterium tussis-convulsivae,Haemophilus pertussis,Hemophilus pertussis
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Yinghua Xu, and Yaying Wang, and Yajun Tan, and Huajie Zhang, and Lijie Wu, and Lichan Wang, and Qiming Hou, and Shumin Zhang
May 1985, Infection and immunity,
Yinghua Xu, and Yaying Wang, and Yajun Tan, and Huajie Zhang, and Lijie Wu, and Lichan Wang, and Qiming Hou, and Shumin Zhang
December 1991, Vaccine,
Yinghua Xu, and Yaying Wang, and Yajun Tan, and Huajie Zhang, and Lijie Wu, and Lichan Wang, and Qiming Hou, and Shumin Zhang
May 1991, Infection and immunity,
Yinghua Xu, and Yaying Wang, and Yajun Tan, and Huajie Zhang, and Lijie Wu, and Lichan Wang, and Qiming Hou, and Shumin Zhang
January 1994, Journal of molecular biology,
Yinghua Xu, and Yaying Wang, and Yajun Tan, and Huajie Zhang, and Lijie Wu, and Lichan Wang, and Qiming Hou, and Shumin Zhang
February 2016, Emerging infectious diseases,
Yinghua Xu, and Yaying Wang, and Yajun Tan, and Huajie Zhang, and Lijie Wu, and Lichan Wang, and Qiming Hou, and Shumin Zhang
April 1995, Vaccine,
Yinghua Xu, and Yaying Wang, and Yajun Tan, and Huajie Zhang, and Lijie Wu, and Lichan Wang, and Qiming Hou, and Shumin Zhang
April 1987, Infection and immunity,
Yinghua Xu, and Yaying Wang, and Yajun Tan, and Huajie Zhang, and Lijie Wu, and Lichan Wang, and Qiming Hou, and Shumin Zhang
August 1984, Journal of medical microbiology,
Yinghua Xu, and Yaying Wang, and Yajun Tan, and Huajie Zhang, and Lijie Wu, and Lichan Wang, and Qiming Hou, and Shumin Zhang
January 2012, PloS one,
Yinghua Xu, and Yaying Wang, and Yajun Tan, and Huajie Zhang, and Lijie Wu, and Lichan Wang, and Qiming Hou, and Shumin Zhang
January 1985, Developments in biological standardization,
Copied contents to your clipboard!