Effect of ketoconazole on human ovarian C17,20-desmolase and aromatase. 1991

M M Weber, and A Will, and B Adelmann, and D Engelhardt
Ludwig-Maximilians-Universität München, Medizinische Klinik II, Germany.

Ketoconazole, an imidazole antimycotic drug, inhibits steroid biosynthesis in adrenal and testicular tissue by blocking cytochrome P-450 dependent enzymes. To study the effect of ketoconazole on steroid biosynthesis in the human ovary we incubated human ovarian tissue (mainly theca cells) or granulosa cells with radiolabeled precursors and increasing concentrations of ketoconazole. After incubation, steroids were extracted and separated by thin layer chromatography (TLC). Activity of C17,20-desmolase and aromatase was estimated by measuring the amount of their radioactive products with liquid scintillation counting. After incubation of ovarian tissue with [3H]17-hydroxyprogesterone the production of [3H]androstenedione was reduced by increasing concentrations of ketoconazole (0-200 microM) to a minimum of 31% of basal production. This indicates a strong inhibition of ovarian C17,20-desmolase by ketoconazole with a 50% inhibiting concentration (IC50) of 23 microM. After incubation of human granulosa cells with ketoconazole (0-2000 microM) and [3H]androstenedione the production of [3H]estrone and [3H]estradiol was suppressed to minimally 37 and 35% of basal values, indicating a significant inhibition of ovarian aromatase. IC50-values were 105 microM ketoconazole for estradiol and 130 microM for estrone. In conclusion, ketoconazole was shown to inhibit human ovarian C17,20-desmolase and aromatase in vitro. As in human adrenals and testes ovarian C17,20-desmolase seems to be most sensitive to the inhibitory effect of ketoconazole.

UI MeSH Term Description Entries
D007654 Ketoconazole Broad spectrum antifungal agent used for long periods at high doses, especially in immunosuppressed patients. Nizoral,R-41400,R41,400,R41400,R 41400
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D004970 Estrone An aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from ANDROSTENEDIONE directly, or from TESTOSTERONE via ESTRADIOL. In humans, it is produced primarily by the cyclic ovaries, PLACENTA, and the ADIPOSE TISSUE of men and postmenopausal women. Folliculin (Hormone),Estrone, (+-)-Isomer,Estrone, (8 alpha)-Isomer,Estrone, (9 beta)-Isomer,Estrovarin,Kestrone,Unigen,Wehgen
D005260 Female Females
D006107 Granulosa Cells Supporting cells for the developing female gamete in the OVARY. They are derived from the coelomic epithelial cells of the gonadal ridge. Granulosa cells form a single layer around the OOCYTE in the primordial ovarian follicle and advance to form a multilayered cumulus oophorus surrounding the OVUM in the Graafian follicle. The major functions of granulosa cells include the production of steroids and LH receptors (RECEPTORS, LH). Cell, Granulosa,Cells, Granulosa,Granulosa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006908 Hydroxyprogesterones Metabolites or derivatives of PROGESTERONE with hydroxyl group substitution at various sites.
D000446 Aldehyde-Lyases Enzymes that catalyze a reverse aldol condensation. A molecule containing a hydroxyl group and a carbonyl group is cleaved at a C-C bond to produce two smaller molecules (ALDEHYDES or KETONES). EC 4.1.2. Aldolases,Aldehyde Lyases

Related Publications

M M Weber, and A Will, and B Adelmann, and D Engelhardt
November 1986, Research communications in chemical pathology and pharmacology,
M M Weber, and A Will, and B Adelmann, and D Engelhardt
November 1986, Research communications in chemical pathology and pharmacology,
M M Weber, and A Will, and B Adelmann, and D Engelhardt
January 1987, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
M M Weber, and A Will, and B Adelmann, and D Engelhardt
January 1988, Journal of steroid biochemistry,
M M Weber, and A Will, and B Adelmann, and D Engelhardt
December 1986, Journal of steroid biochemistry,
M M Weber, and A Will, and B Adelmann, and D Engelhardt
January 1987, Steroids,
M M Weber, and A Will, and B Adelmann, and D Engelhardt
November 1987, Nihon Naibunpi Gakkai zasshi,
M M Weber, and A Will, and B Adelmann, and D Engelhardt
July 1993, Archiv der Pharmazie,
M M Weber, and A Will, and B Adelmann, and D Engelhardt
July 1996, The American journal of pathology,
Copied contents to your clipboard!