Alterations in intracellular calcium ion concentrations in cerebellar granule cells of the CACNA1A mutant mouse, leaner, during postnatal development. 2011

Bhupinder Bawa, and Louise C Abbott
Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA.

Maintaining calcium ion (Ca²+) homeostasis is crucial for normal neuronal function. Altered Ca²+ homeostasis interferes with Ca²+ signaling processes and affects neuronal survival. In this study, we used homozygous leaner and tottering mutant mice, which carry autosomal recessive mutations in the gene coding for the α(1A) pore forming subunit of Ca(V)2.1 (P/Q-type) voltage-gated calcium channels (VGCC). Leaner mice show severe ataxia and epilepsy, while tottering mice are less severely affected. Leaner cerebellar granule cells (CGC) show extensive apoptotic cell death that peaks at postnatal (P) day 20 and continues into adulthood. Intracellular Ca²+ ([Ca²+](i)) concentrations in leaner and tottering mouse Purkinje cells have been described, but [Ca²+](i) concentrations have not been reported for granule cells, the largest neuronal population of the cerebellum. Using the ratiometric dye, Fura-2 AM, we investigated the role of Ca²+ homeostasis in CGC death during postnatal development by demonstrating basal [Ca²+](i), depolarization induced Ca²+ transients, and Ca²+ transients after completely blocking Ca(V)2.1 VGCC. From P20 onward, basal [Ca²+](i) levels in leaner CGC were significantly lower compared to age-matched wild-type CGC. We also compared basal [Ca²+](i) levels in leaner and wild-type CGC to basal [Ca²+](i) in tottering CGC. Potassium chloride induced depolarization revealed no significant difference in Ca²+ transients between leaner and wild-type CGC, indicating that even though leaner CGC have dysfunctional P/Q-type VGCC, Ca²+ transients after depolarization are the same. This suggests that other VGCC are compensating for the dysfunctional P/Q channels. This finding was further confirmed by completely blocking Ca(V)2.1 VGCC using ω-Agatoxin IV-A.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008818 Mice, Neurologic Mutants Mice which carry mutant genes for neurologic defects or abnormalities. Lurcher Mice,Nervous Mice,Reeler Mice,Staggerer Mice,Weaver Mice,Chakragati Mice,Chakragati Mouse,Lurcher Mouse,Mice, Neurological Mutants,Mouse, Neurologic Mutant,Mouse, Neurological Mutant,Nervous Mouse,Neurologic Mutant Mice,Neurological Mutant Mouse,Reeler Mouse,Staggerer Mouse,Weaver Mouse,ckr Mutant Mice,Mice, Chakragati,Mice, Lurcher,Mice, Nervous,Mice, Neurologic Mutant,Mice, Reeler,Mice, Staggerer,Mice, Weaver,Mice, ckr Mutant,Mouse, Chakragati,Mouse, Lurcher,Mouse, Nervous,Mouse, Reeler,Mouse, Staggerer,Mouse, Weaver,Mutant Mice, Neurologic,Mutant Mice, ckr,Mutant Mouse, Neurologic,Neurologic Mutant Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D005260 Female Females
D005808 Genes, Recessive Genes that influence the PHENOTYPE only in the homozygous state. Conditions, Recessive Genetic,Genetic Conditions, Recessive,Recessive Genetic Conditions,Condition, Recessive Genetic,Gene, Recessive,Genetic Condition, Recessive,Recessive Gene,Recessive Genes,Recessive Genetic Condition
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Bhupinder Bawa, and Louise C Abbott
January 2004, Neurotoxicity research,
Bhupinder Bawa, and Louise C Abbott
June 2002, Journal of neurobiology,
Bhupinder Bawa, and Louise C Abbott
January 1982, Neuroscience,
Bhupinder Bawa, and Louise C Abbott
July 2000, Journal of neurophysiology,
Bhupinder Bawa, and Louise C Abbott
June 2015, Brain research,
Bhupinder Bawa, and Louise C Abbott
June 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Bhupinder Bawa, and Louise C Abbott
December 2009, Cellular and molecular neurobiology,
Bhupinder Bawa, and Louise C Abbott
October 2010, The European journal of neuroscience,
Copied contents to your clipboard!