Radiotherapy in mice with yttrium-90-labeled anti-Ly1 monoclonal antibody: therapy of the T cell lymphoma EL4. 1991

H Schmidberger, and D J Buchsbaum, and B R Blazar, and P Everson, and D A Vallera
Department of Therapeutic Radiology, University of Minnesota Hospital and Clinic, Minneapolis 55455.

Yttrium-90 is a potent beta-emitting radionuclide with potential for therapy of lymphoma. A monoclonal antibody against Ly1, the murine homologue of human CD5, was labeled with 90Y and found to selectively bind to Ly1-positive, radiation-sensitive, EL4 mouse lymphoma cells. When tested in this aggressive model of T cell lymphoma, in vivo studies in C57BL/6 mice showed that a single 140-microCi i.p. dose of 90Y-anti-Ly1, given 1 day after i.v. injection of a lethal dose of EL4 cells, resulted in significant but transient improvement in survival. Protection was selective, since a 90Y-labeled irrelevant control antibody did not prolong survival. Biodistribution studies showed that protection was likely limited by inadequate localization of labeled antibody to tumor. Importantly, labeled anti-Ly1 specifically localized in the immunological tissue (spleen and thymus) and lowered the WBC count, perhaps limiting the tolerated dose. Myelosuppression, which is considered one of the major side effects associated with 90Y usage, was not a lethal complication, since WBC counts recovered in mice given a 140-microCi dose of 90Y-anti-Ly1 without EL4 cells and 100% of these animals survived. The maximum tolerated dose was less than 200 microCi. Despite the high localization of 90Y-anti-Ly1 in spleen, splenectomies of tumor-injected mice did not improve the antitumor efficacy of radiolabeled antibody. Further evidence for inadequate delivery of radionuclide to tumor was shown when external total-body irradiation was given to mice given injections of a lethal dose of EL4 tumor cells. Comparison of internal and external irradiation studies indicated that the partially protective effect of 140 microCi 90Y-Ly1 was equivalent to external radiation of only 100-200 cGy. Because this model reflects the current clinical limitations of radiolabeled antibodies for therapy, including partial antitumor efficacy, delivery of labeled anti-T cell antibodies to the immune system, and low maximum tolerated dose, the model may be useful for examining strategies which could increase the tolerated dose and therapeutic efficacy.

UI MeSH Term Description Entries
D007518 Isoantibodies Antibodies from an individual that react with ISOANTIGENS of another individual of the same species. Alloantibodies
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011829 Radiation Dosage The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv). Sievert Units,Dosage, Radiation,Gray Units,Gy Radiation,Sv Radiation Dose Equivalent,Dosages, Radiation,Radiation Dosages,Units, Gray,Units, Sievert
D001772 Blood Cell Count The number of LEUKOCYTES and ERYTHROCYTES per unit volume in a sample of venous BLOOD. A complete blood count (CBC) also includes measurement of the HEMOGLOBIN; HEMATOCRIT; and ERYTHROCYTE INDICES. Blood Cell Number,Blood Count, Complete,Blood Cell Counts,Blood Cell Numbers,Blood Counts, Complete,Complete Blood Count,Complete Blood Counts,Count, Blood Cell,Count, Complete Blood,Counts, Blood Cell,Counts, Complete Blood,Number, Blood Cell,Numbers, Blood Cell
D005260 Female Females
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000922 Immunotoxins Semisynthetic conjugates of various toxic molecules, including RADIOACTIVE ISOTOPES and bacterial or plant toxins, with specific immune substances such as IMMUNOGLOBULINS; MONOCLONAL ANTIBODIES; and ANTIGENS. The antitumor or antiviral immune substance carries the toxin to the tumor or infected cell where the toxin exerts its poisonous effect. Affinotoxin,Antibody-Toxin Conjugate,Antibody-Toxin Conjugates,Antibody-Toxin Hybrid,Antibody-Toxin Hybrids,Chimeric Toxins,Cytotoxin-Antibody Conjugate,Cytotoxin-Antibody Conjugates,Monoclonal Antibody-Toxin Conjugate,Targeted Toxin,Targeted Toxins,Toxin Carriers,Toxin Conjugates,Toxin-Antibody Conjugate,Toxin-Antibody Conjugates,Toxin-Antibody Hybrid,Toxin-Antibody Hybrids,Toxins, Chimeric,Toxins, Targeted,Affinotoxins,Chimeric Toxin,Immunotoxin,Monoclonal Antibody-Toxin Conjugates,Toxin Carrier,Toxin Conjugate,Antibody Toxin Conjugate,Antibody Toxin Conjugates,Antibody Toxin Hybrid,Antibody Toxin Hybrids,Antibody-Toxin Conjugate, Monoclonal,Antibody-Toxin Conjugates, Monoclonal,Carrier, Toxin,Carriers, Toxin,Conjugate, Antibody-Toxin,Conjugate, Cytotoxin-Antibody,Conjugate, Monoclonal Antibody-Toxin,Conjugate, Toxin,Conjugate, Toxin-Antibody,Conjugates, Antibody-Toxin,Conjugates, Cytotoxin-Antibody,Conjugates, Monoclonal Antibody-Toxin,Conjugates, Toxin,Conjugates, Toxin-Antibody,Cytotoxin Antibody Conjugate,Cytotoxin Antibody Conjugates,Hybrid, Antibody-Toxin,Hybrid, Toxin-Antibody,Hybrids, Antibody-Toxin,Hybrids, Toxin-Antibody,Monoclonal Antibody Toxin Conjugate,Monoclonal Antibody Toxin Conjugates,Toxin Antibody Conjugate,Toxin Antibody Conjugates,Toxin Antibody Hybrid,Toxin Antibody Hybrids,Toxin, Chimeric,Toxin, Targeted
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte

Related Publications

H Schmidberger, and D J Buchsbaum, and B R Blazar, and P Everson, and D A Vallera
March 1996, Clinical cancer research : an official journal of the American Association for Cancer Research,
H Schmidberger, and D J Buchsbaum, and B R Blazar, and P Everson, and D A Vallera
February 2004, Cancer biotherapy & radiopharmaceuticals,
H Schmidberger, and D J Buchsbaum, and B R Blazar, and P Everson, and D A Vallera
August 2007, Cancer biotherapy & radiopharmaceuticals,
H Schmidberger, and D J Buchsbaum, and B R Blazar, and P Everson, and D A Vallera
May 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
H Schmidberger, and D J Buchsbaum, and B R Blazar, and P Everson, and D A Vallera
December 1990, Journal of clinical oncology : official journal of the American Society of Clinical Oncology,
H Schmidberger, and D J Buchsbaum, and B R Blazar, and P Everson, and D A Vallera
February 2002, Cancer,
H Schmidberger, and D J Buchsbaum, and B R Blazar, and P Everson, and D A Vallera
May 1996, Blood,
H Schmidberger, and D J Buchsbaum, and B R Blazar, and P Everson, and D A Vallera
November 1994, Nuclear medicine and biology,
H Schmidberger, and D J Buchsbaum, and B R Blazar, and P Everson, and D A Vallera
March 2009, Nihon Hoshasen Gijutsu Gakkai zasshi,
Copied contents to your clipboard!