Engineered CH2 domains (nanoantibodies). 2009

Dimiter S Dimitrov
Protein Interactions Group, Center for Cancer Research Nanobiology Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA. dimitrov@ncifcrf.gov

Currently, almost all FDA approved therapeutic antibodies (except ReoPro, Lucentis and Cimzia which are Fabs), and the vast majority of those in clinical trials are full-size antibodies mostly in IgG1 format of about 150 kDa size. A fundamental problem for such large molecules is their poor penetration into tissues (e.g., solid tumors) and poor or absent binding to regions on the surface of some molecules (e.g., on the HIV envelope glycoprotein) which are fully accessible only by molecules of smaller size. Therefore, much work especially during the last decade has been aimed at developing novel scaffolds of much smaller size and high stability. Here I briefly describe a proposition to use the immunoglobulin (Ig) constant CH2 domain (CH3 for IgE and IgM) as a scaffold. CH2 is critical for the Ig effector functions. Isolated CH2 is stable monomer in contrast to all other constant domains and most of the variable domains. CH2 and engineered CH2 domains with improved stability can be used as scaffolds for construction of libraries containing diverse binders to various antigens. Such binders based on a CH2 scaffold could also confer some effector functions. Because the CH2 domains are the smallest independently folded antibody domains that can be engineered to contain simultaneously antigen-binding sites and binding sites mediating effector and stability functions, and to distinguish them from domain antibodies which are used to denote engineered VH or VL domains or nanobodies which are used to denote camelid VHH, I termed them nanoantibodies (nAbs).

UI MeSH Term Description Entries
D007127 Immunoglobulin Constant Regions The domains of the immunoglobulin molecules that are invariable in their amino acid sequence within any class or subclass of immunoglobulin. They confer biological as well as structural functions to immunoglobulins. One each on both the light chains and the heavy chains comprises the C-terminus half of the IMMUNOGLOBULIN FAB FRAGMENT and two or three of them make up the rest of the heavy chains (all of the IMMUNOGLOBULIN FC FRAGMENT) Ig Constant Regions,Immunoglobulin Constant Region,Constant Region, Ig,Constant Region, Immunoglobulin,Constant Regions, Ig,Constant Regions, Immunoglobulin,Regions, Ig Constant
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015202 Protein Engineering Procedures by which protein structure and function are changed or created in vitro by altering existing or synthesizing new structural genes that direct the synthesis of proteins with sought-after properties. Such procedures may include the design of MOLECULAR MODELS of proteins using COMPUTER GRAPHICS or other molecular modeling techniques; site-specific mutagenesis (MUTAGENESIS, SITE-SPECIFIC) of existing genes; and DIRECTED MOLECULAR EVOLUTION techniques to create new genes. Genetic Engineering of Proteins,Genetic Engineering, Protein,Proteins, Genetic Engineering,Engineering, Protein,Engineering, Protein Genetic,Protein Genetic Engineering
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures
D017510 Protein Folding Processes involved in the formation of TERTIARY PROTEIN STRUCTURE. Protein Folding, Globular,Folding, Globular Protein,Folding, Protein,Foldings, Globular Protein,Foldings, Protein,Globular Protein Folding,Globular Protein Foldings,Protein Foldings,Protein Foldings, Globular
D053758 Nanoparticles Nanometer-sized particles that are nanoscale in three dimensions. They include nanocrystaline materials; NANOCAPSULES; METAL NANOPARTICLES; DENDRIMERS, and QUANTUM DOTS. The uses of nanoparticles include DRUG DELIVERY SYSTEMS and cancer targeting and imaging. Nanocrystalline Materials,Nanocrystals,Material, Nanocrystalline,Materials, Nanocrystalline,Nanocrystal,Nanocrystalline Material,Nanoparticle

Related Publications

Dimiter S Dimitrov
January 2021, Biotechnologia,
Dimiter S Dimitrov
January 2016, Current pharmaceutical design,
Dimiter S Dimitrov
June 2022, ACS chemical biology,
Dimiter S Dimitrov
October 2018, Applied immunohistochemistry & molecular morphology : AIMM,
Dimiter S Dimitrov
June 2020, Bioconjugate chemistry,
Dimiter S Dimitrov
October 2018, ACS synthetic biology,
Dimiter S Dimitrov
April 2012, Journal of physics. Condensed matter : an Institute of Physics journal,
Dimiter S Dimitrov
April 2018, ACS applied materials & interfaces,
Copied contents to your clipboard!