Regional assignment of the human acid sphingomyelinase gene (SMPD1) by PCR analysis of somatic cell hybrids and in situ hybridization to 11p15.1----p15.4. 1991

L da Veiga Pereira, and R J Desnick, and D A Adler, and C M Disteche, and E H Schuchman
Division of Medical and Molecular Genetics, Mount Sinai School of Medicine, New York, New York 10029.

Human acid sphingomyelinase (SMPD1) is the lysosomal phosphodiesterase that cleaves sphingomyelin to ceramide and phosphocholine. The deficient activity of SMPD1 is the enzymatic defect in Types A and B Niemann-Pick disease. Previously, the gene encoding human SMPD1 was assigned to chromosome 17 by the differential thermostability of human and hamster SMPD1 in somatic cell hybrids. The recent isolation of the human SMPD1 cDNA (L. E. Quintern, E. H. Schuchman, O. Levran, M. Suchi, K. Ferlinz, H. Reinke, K. Sandhoff, and R. J. Desnick, 1989, EMBO J. 8: 2469-2473) permitted the mapping of this gene by molecular techniques. Oligonucleotide primers were synthesized to PCR amplify the human, but not murine, SMPD1 sequences in man-mouse somatic cell hybrids. In a panel of 15 hybrid cell lines, amplification of the human SMPD1 sequence was 100% concordant with the presence of human chromosome 11. For each of the other human chromosomes there were at least 6 discordant hybrid lines. Further analysis of somatic cell hybrids containing only chromosome 11 or chromosome 11 rearrangements localized the human SMPD1 gene to the region 11p15.1----p15.4. To provide an independent regional gene assignment, in situ hybridization was performed using the radiolabeled human SMPD1 cDNA. In the 58 metaphase cells examined, 34% of the 122 hybridization sites scored were located in the distal end of chromosome 11 with the major peak of hybridization at band 11p15. The absence of any other in situ hybridization site indicated the absence of pseudogenes or homologous sequences elsewhere in the genome. In contrast to the previous provisional localization to chromosome 17, these results assign a single locus for human SMPD1 to 11p15.1----p15.4.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002880 Chromosomes, Human, Pair 11 A specific pair of GROUP C CHROMOSOMES of the human chromosome classification. Chromosome 11
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006822 Hybrid Cells Any cell, other than a ZYGOTE, that contains elements (such as NUCLEI and CYTOPLASM) from two or more different cells, usually produced by artificial CELL FUSION. Somatic Cell Hybrids,Cell Hybrid, Somatic,Cell Hybrids, Somatic,Cell, Hybrid,Cells, Hybrid,Hybrid Cell,Hybrid, Somatic Cell,Hybrids, Somatic Cell,Somatic Cell Hybrid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013108 Sphingomyelin Phosphodiesterase An enzyme that catalyzes the hydrolysis of sphingomyelin to ceramide (N-acylsphingosine) plus choline phosphate. A defect in this enzyme leads to NIEMANN-PICK DISEASE. EC 3.1.4.12. Sphingomyelin Cholinephosphohydrolase,Sphingomyelin Cleaving Enzyme,Sphingomyelinase,Sphingomyelinase C

Related Publications

L da Veiga Pereira, and R J Desnick, and D A Adler, and C M Disteche, and E H Schuchman
November 1993, Genomics,
L da Veiga Pereira, and R J Desnick, and D A Adler, and C M Disteche, and E H Schuchman
January 1993, Cytogenetics and cell genetics,
L da Veiga Pereira, and R J Desnick, and D A Adler, and C M Disteche, and E H Schuchman
January 1993, BioTechniques,
L da Veiga Pereira, and R J Desnick, and D A Adler, and C M Disteche, and E H Schuchman
April 1996, Genomics,
L da Veiga Pereira, and R J Desnick, and D A Adler, and C M Disteche, and E H Schuchman
April 1996, Genomics,
L da Veiga Pereira, and R J Desnick, and D A Adler, and C M Disteche, and E H Schuchman
August 1992, Genomics,
L da Veiga Pereira, and R J Desnick, and D A Adler, and C M Disteche, and E H Schuchman
January 2001, Cytogenetics and cell genetics,
L da Veiga Pereira, and R J Desnick, and D A Adler, and C M Disteche, and E H Schuchman
April 1995, Genomics,
L da Veiga Pereira, and R J Desnick, and D A Adler, and C M Disteche, and E H Schuchman
January 1996, Cytogenetics and cell genetics,
Copied contents to your clipboard!