Co-operativity in agonist binding at the D2 dopamine receptor: evidence from agonist dissociation kinetics. 2010

Elodie Kara, and Hong Lin, and Philip G Strange
School of Pharmacy, University of Reading, Whiteknights, Reading, UK.

There is much evidence to suggest that G protein coupled receptors exist as oligomers but the relevance to their function is unclear. We have, therefore, examined the binding of the radiolabelled agonist [(3)H]NPA to membranes of CHO cells expressing the D(2) dopamine receptor in dissociation rate experiments. When [(3)H]NPA dissociation was started by dilution, the dissociation rate in the absence of sodium ions was unaffected by addition of the antagonist/inverse agonist (+)-butaclamol, but was accelerated by addition of agonists e.g. dopamine, suggesting that the receptor was not behaving as a monomer with a single binding site. The very low efficacy partial agonist, aripiprazole provided an intermediate level of acceleration of dissociation. [(3)H]NPA dissociation experiments started by addition of ligands without dilution gave a similar pattern. [(3)H]NPA dissociation could also be accelerated by GTP. Dissociation of [(3)H]NPA in the presence of GTP and dopamine provided a greater acceleration than for either modulator alone, suggesting synergistic effects related to receptor/G protein interaction. When [(3)H]NPA dissociation experiments were performed in the presence of sodium ions, dissociation was faster than in their absence but the rate still depended on the ligand present in the assay. Overall the data cannot be explained by a ternary complex model and are consistent with an oligomeric receptor in which binding of [(3)H]NPA, as an example of an agonist ligand, can be modulated co-operatively by ligands binding elsewhere in the oligomer. Interactions with G proteins also occurs providing further modulation of [(3)H]NPA binding. Both agonists and G proteins are proposed to modulate the oligomer by switching high affinity agonist binding sites to low affinity sites.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001058 Apomorphine A derivative of morphine that is a dopamine D2 agonist. It is a powerful emetic and has been used for that effect in acute poisoning. It has also been used in the diagnosis and treatment of parkinsonism, but its adverse effects limit its use. Apokinon,Apomorphin-Teclapharm,Apomorphine Chloride,Apomorphine Hydrochloride,Apomorphine Hydrochloride Anhydrous,Apomorphine Hydrochloride, Anhydrous,Apomorphine Hydrochloride, Hemihydrate,Britaject,Apomorphin Teclapharm
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

Elodie Kara, and Hong Lin, and Philip G Strange
April 2021, International journal of molecular sciences,
Elodie Kara, and Hong Lin, and Philip G Strange
January 1991, Journal of molecular neuroscience : MN,
Elodie Kara, and Hong Lin, and Philip G Strange
June 2001, The Journal of biological chemistry,
Elodie Kara, and Hong Lin, and Philip G Strange
September 1991, European journal of pharmacology,
Elodie Kara, and Hong Lin, and Philip G Strange
February 1995, Biochemical Society transactions,
Elodie Kara, and Hong Lin, and Philip G Strange
January 2007, Journal of receptor and signal transduction research,
Elodie Kara, and Hong Lin, and Philip G Strange
April 2020, The New England journal of medicine,
Elodie Kara, and Hong Lin, and Philip G Strange
July 1998, British journal of pharmacology,
Elodie Kara, and Hong Lin, and Philip G Strange
October 2015, Progress in neuro-psychopharmacology & biological psychiatry,
Copied contents to your clipboard!