The p38 signaling pathway upregulates expression of the Epstein-Barr virus LMP1 oncogene. 2010

Pegah Johansson, and Ann Jansson, and Ulla Rüetschi, and Lars Rymo
Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University ofGothenburg, 413 45 Gothenburg, Sweden.

The Epstein-Barr virus (EBV)-encoded LMP1 oncogene has a role in transformation, proliferation, and metastasis of several EBV-associated tumors. Furthermore, LMP1 is critically involved in transformation and growth of EBV-immortalized B cells in vitro. The oncogenic properties of LMP1 are attributed to its ability to upregulate anti-apoptotic proteins and growth signals. The transcriptional regulation of LMP1 is dependent on the context of cellular and viral proteins present in the cell. Here, we investigated the effect of several signaling pathways on the regulation of LMP1 expression. Inhibition of p38 signaling, using p38-specific inhibitors SB203580 and SB202190, downregulated LMP1 in estrogen-induced EREB2.5 cells. Similarly, p38 inhibition decreased trichostatin A-induced LMP1 expression in P3HR1 cells. Exogenous expression of p38 in lymphoblastoid cell lines (LCLs) led to an increase in LMP1 promoter activity in reporter assays, and this activation was mediated by the previously identified CRE site in the promoter. Inhibition of p38 by SB203580 and p38-specific small interfering RNA (siRNA) also led to a modest decrease in endogenous LMP1 expression in LCLs. Chromatin immunoprecipitation indicated decreased binding of CREB-ATF1 to the CRE site in the LMP1 promoter after inhibition of the p38 pathway in EREB2.5 cells. Taken together, our results suggest that an increase in p38 activation upregulates LMP1 expression. Since p38 is activated in response to stimuli such as stress or possibly primary infection, a transient upregulation of LMP1 in response to p38 may allow the cells to escape apoptosis. Since the p38 pathway itself is activated by LMP1, our results also suggest the presence of an autoregulatory loop in LMP1 upregulation.

UI MeSH Term Description Entries
D009856 Oncogene Proteins, Viral Products of viral oncogenes, most commonly retroviral oncogenes. They usually have transforming and often protein kinase activities. Viral Oncogene Proteins,Viral Transforming Proteins,v-onc Proteins,Transforming Proteins, Viral,v onc Proteins
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004854 Herpesvirus 4, Human The type species of LYMPHOCRYPTOVIRUS, subfamily GAMMAHERPESVIRINAE, infecting B-cells in humans. It is thought to be the causative agent of INFECTIOUS MONONUCLEOSIS and is strongly associated with oral hairy leukoplakia (LEUKOPLAKIA, HAIRY;), BURKITT LYMPHOMA; and other malignancies. Burkitt Herpesvirus,Burkitt Lymphoma Virus,E-B Virus,EBV,Epstein-Barr Virus,Human Herpesvirus 4,Infectious Mononucleosis Virus,Burkitt's Lymphoma Virus,HHV-4,Herpesvirus 4 (gamma), Human,Burkitts Lymphoma Virus,E B Virus,E-B Viruses,Epstein Barr Virus,Herpesvirus, Burkitt,Infectious Mononucleosis Viruses,Lymphoma Virus, Burkitt,Mononucleosis Virus, Infectious,Mononucleosis Viruses, Infectious
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014763 Viral Matrix Proteins Proteins associated with the inner surface of the lipid bilayer of the viral envelope. These proteins have been implicated in control of viral transcription and may possibly serve as the "glue" that binds the nucleocapsid to the appropriate membrane site during viral budding from the host cell. Membrane Proteins, Viral,Viral M Proteins,Viral M Protein,Viral Membrane Proteins
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation

Related Publications

Pegah Johansson, and Ann Jansson, and Ulla Rüetschi, and Lars Rymo
March 2010, Oncogene,
Pegah Johansson, and Ann Jansson, and Ulla Rüetschi, and Lars Rymo
May 2004, Oncogene,
Pegah Johansson, and Ann Jansson, and Ulla Rüetschi, and Lars Rymo
January 2015, Molekuliarnaia biologiia,
Pegah Johansson, and Ann Jansson, and Ulla Rüetschi, and Lars Rymo
November 2017, Journal of virology,
Pegah Johansson, and Ann Jansson, and Ulla Rüetschi, and Lars Rymo
May 2019, Translational oncology,
Pegah Johansson, and Ann Jansson, and Ulla Rüetschi, and Lars Rymo
January 2002, Frontiers in bioscience : a journal and virtual library,
Pegah Johansson, and Ann Jansson, and Ulla Rüetschi, and Lars Rymo
December 1997, Experimental hematology,
Pegah Johansson, and Ann Jansson, and Ulla Rüetschi, and Lars Rymo
April 2021, Viruses,
Pegah Johansson, and Ann Jansson, and Ulla Rüetschi, and Lars Rymo
May 2015, PLoS pathogens,
Copied contents to your clipboard!