Isoniazid-resistance conferring mutations in Mycobacterium tuberculosis KatG: catalase, peroxidase, and INH-NADH adduct formation activities. 2010

Christine E Cade, and Adrienne C Dlouhy, and Katalin F Medzihradszky, and Saida Patricia Salas-Castillo, and Reza A Ghiladi
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.

Mycobacterium tuberculosis catalase-peroxidase (KatG) is a bifunctional hemoprotein that has been shown to activate isoniazid (INH), a pro-drug that is integral to frontline antituberculosis treatments. The activated species, presumed to be an isonicotinoyl radical, couples to NAD(+)/NADH forming an isoniazid-NADH adduct that ultimately confers anti-tubercular activity. To better understand the mechanisms of isoniazid activation as well as the origins of KatG-derived INH-resistance, we have compared the catalytic properties (including the ability to form the INH-NADH adduct) of the wild-type enzyme to 23 KatG mutants which have been associated with isoniazid resistance in clinical M. tuberculosis isolates. Neither catalase nor peroxidase activities, the two inherent enzymatic functions of KatG, were found to correlate with isoniazid resistance. Furthermore, catalase function was lost in mutants which lacked the Met-Tyr-Trp crosslink, the biogenic cofactor in KatG which has been previously shown to be integral to this activity. The presence or absence of the crosslink itself, however, was also found to not correlate with INH resistance. The KatG resistance-conferring mutants were then assayed for their ability to generate the INH-NADH adduct in the presence of peroxide (t-BuOOH and H(2)O(2)), superoxide, and no exogenous oxidant (air-only background control). The results demonstrate that residue location plays a critical role in determining INH-resistance mechanisms associated with INH activation; however, different mutations at the same location can produce vastly different reactivities that are oxidant-specific. Furthermore, the data can be interpreted to suggest the presence of a second mechanism of INH-resistance that is not correlated with the formation of the INH-NADH adduct.

UI MeSH Term Description Entries
D007538 Isoniazid Antibacterial agent used primarily as a tuberculostatic. It remains the treatment of choice for tuberculosis. Isonicotinic Acid Hydrazide,Ftivazide,Isonex,Isonicotinic Acid Vanillylidenehydrazide,Phthivazid,Phthivazide,Tubazide,Acid Vanillylidenehydrazide, Isonicotinic,Hydrazide, Isonicotinic Acid,Vanillylidenehydrazide, Isonicotinic Acid
D009169 Mycobacterium tuberculosis A species of gram-positive, aerobic bacteria that produces TUBERCULOSIS in humans, other primates, CATTLE; DOGS; and some other animals which have contact with humans. Growth tends to be in serpentine, cordlike masses in which the bacilli show a parallel orientation. Mycobacterium tuberculosis H37Rv
D009195 Peroxidase A hemeprotein from leukocytes. Deficiency of this enzyme leads to a hereditary disorder coupled with disseminated moniliasis. It catalyzes the conversion of a donor and peroxide to an oxidized donor and water. EC 1.11.1.7. Myeloperoxidase,Hemi-Myeloperoxidase,Hemi Myeloperoxidase
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000995 Antitubercular Agents Drugs used in the treatment of tuberculosis. They are divided into two main classes: "first-line" agents, those with the greatest efficacy and acceptable degrees of toxicity used successfully in the great majority of cases; and "second-line" drugs used in drug-resistant cases or those in which some other patient-related condition has compromised the effectiveness of primary therapy. Anti-Tuberculosis Agent,Anti-Tuberculosis Agents,Anti-Tuberculosis Drug,Anti-Tuberculosis Drugs,Antitubercular Agent,Antitubercular Drug,Tuberculostatic Agent,Tuberculostatic Agents,Antitubercular Drugs,Agent, Anti-Tuberculosis,Agent, Antitubercular,Agent, Tuberculostatic,Anti Tuberculosis Agent,Anti Tuberculosis Agents,Anti Tuberculosis Drug,Anti Tuberculosis Drugs,Drug, Anti-Tuberculosis,Drug, Antitubercular
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

Christine E Cade, and Adrienne C Dlouhy, and Katalin F Medzihradszky, and Saida Patricia Salas-Castillo, and Reza A Ghiladi
January 2020, Frontiers in microbiology,
Christine E Cade, and Adrienne C Dlouhy, and Katalin F Medzihradszky, and Saida Patricia Salas-Castillo, and Reza A Ghiladi
August 2000, Biochemistry,
Christine E Cade, and Adrienne C Dlouhy, and Katalin F Medzihradszky, and Saida Patricia Salas-Castillo, and Reza A Ghiladi
December 2018, Journal of global antimicrobial resistance,
Christine E Cade, and Adrienne C Dlouhy, and Katalin F Medzihradszky, and Saida Patricia Salas-Castillo, and Reza A Ghiladi
January 1995, Molecular microbiology,
Christine E Cade, and Adrienne C Dlouhy, and Katalin F Medzihradszky, and Saida Patricia Salas-Castillo, and Reza A Ghiladi
January 2018, Tuberculosis (Edinburgh, Scotland),
Christine E Cade, and Adrienne C Dlouhy, and Katalin F Medzihradszky, and Saida Patricia Salas-Castillo, and Reza A Ghiladi
November 1996, Molecular microbiology,
Christine E Cade, and Adrienne C Dlouhy, and Katalin F Medzihradszky, and Saida Patricia Salas-Castillo, and Reza A Ghiladi
April 2017, Journal of molecular modeling,
Christine E Cade, and Adrienne C Dlouhy, and Katalin F Medzihradszky, and Saida Patricia Salas-Castillo, and Reza A Ghiladi
January 2004, Microbial drug resistance (Larchmont, N.Y.),
Christine E Cade, and Adrienne C Dlouhy, and Katalin F Medzihradszky, and Saida Patricia Salas-Castillo, and Reza A Ghiladi
June 2009, The Journal of biological chemistry,
Christine E Cade, and Adrienne C Dlouhy, and Katalin F Medzihradszky, and Saida Patricia Salas-Castillo, and Reza A Ghiladi
August 1992, Nature,
Copied contents to your clipboard!