The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. 2010

Denis Drygin, and William G Rice, and Ingrid Grummt
Cylene Pharmaceuticals, San Diego, California, USA. ddrygin@cylenepharma.com

The RNA polymerase I (Pol I) transcription machinery in the nucleolus is the key convergence point that collects and integrates a vast array of information from cellular signaling cascades to regulate ribosome production that in turn guides cell growth and proliferation. Cancer cells commonly harbor mutations that inactivate tumor suppressors, hyperactivate oncogenes, and upregulate protein kinases, all of which promote Pol I transcription and drive cell proliferation. The intimate balance between Pol I transcription and growth-factor signaling is perturbed in cancer cells, indicating that upregulation of rRNA synthesis is mandatory for all tumors. Though the emerging picture of transcriptional regulation reveals an unexpected level of complexity, we are beginning to understand the multiple links between rRNA biogenesis and cancer. In this review, we discuss experimental data and potential strategies to downregulate rRNA synthesis and induce an antiproliferative response in cancer cells.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D009857 Oncogenes Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene. Transforming Genes,Oncogene,Transforming Gene,Gene, Transforming,Genes, Transforming
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002466 Cell Nucleolus Within most types of eukaryotic CELL NUCLEUS, a distinct region, not delimited by a membrane, in which some species of rRNA (RNA, RIBOSOMAL) are synthesized and assembled into ribonucleoprotein subunits of ribosomes. In the nucleolus rRNA is transcribed from a nucleolar organizer, i.e., a group of tandemly repeated chromosomal genes which encode rRNA and which are transcribed by RNA polymerase I. (Singleton & Sainsbury, Dictionary of Microbiology & Molecular Biology, 2d ed) Plasmosome,Cell Nucleoli,Nucleoli, Cell,Nucleolus, Cell,Plasmosomes
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012318 RNA Polymerase I A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. The enzyme functions in the nucleolar structure and transcribes DNA into RNA. It has different requirements for cations and salts than RNA polymerase II and III and is not inhibited by alpha-amanitin. DNA-Dependent RNA Polymerase I,RNA Polymerase A,DNA Dependent RNA Polymerase I,Polymerase A, RNA,Polymerase I, RNA
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

Denis Drygin, and William G Rice, and Ingrid Grummt
January 2006, Biochemical Society symposium,
Denis Drygin, and William G Rice, and Ingrid Grummt
January 2013, OncoTargets and therapy,
Denis Drygin, and William G Rice, and Ingrid Grummt
March 2008, Eukaryotic cell,
Denis Drygin, and William G Rice, and Ingrid Grummt
September 2011, Science (New York, N.Y.),
Denis Drygin, and William G Rice, and Ingrid Grummt
January 2014, Current drug targets,
Denis Drygin, and William G Rice, and Ingrid Grummt
July 2018, European journal of medicinal chemistry,
Denis Drygin, and William G Rice, and Ingrid Grummt
June 2020, Nucleic acids research,
Denis Drygin, and William G Rice, and Ingrid Grummt
April 2004, FEBS letters,
Denis Drygin, and William G Rice, and Ingrid Grummt
May 2020, International journal of molecular sciences,
Denis Drygin, and William G Rice, and Ingrid Grummt
May 2004, Nature structural & molecular biology,
Copied contents to your clipboard!