Structure-activity relationships of nonisomerizable derivatives of tamoxifen: importance of hydroxyl group and side chain positioning for biological activity. 1991

C S Murphy, and C J Parker, and R McCague, and V C Jordan
Department of Human Oncology, University of Wisconsin Clinical Cancer Center, Madison 53792.

The antiestrogen tamoxifen [(Z)-1(p-beta-dimethylaminoethoxy-phenyl)-1,2-diphenylbut-1-ene] is an effective anticancer agent against estrogen receptor (ER)-positive breast cancer. The alkylaminoethane side chain is essential for antiestrogenic activity, but the potency of the antiestrogen can be increased by para hydroxylation of the phenyl ring on carbon 1 of but-1-ene. This compound, 4-hydroxytamoxifen, is a metabolite of tamoxifen and has a very high binding affinity for ER [J. Endocrinol. 75:305-316 (1977)] because the hydroxyl is located in the equivalent position as the 3-phenolic hydroxyl of 17 beta-estradiol. In this study, we have examined the relationship between the relative positions of the hydroxyl and the alkyl-aminoethane side chain and the pharmacological activity of the ligand. A fixed seven-membered ring derivative of the triphenylethylene was used to prevent isomerization. All compounds were tested, with and without 17 beta-estradiol, for their effects on the growth of estrogen-responsive T47D and MCF-7 human breast cancer cells in vitro. The growth of MDA-MB-231 ER-negative breast cancer cells was not affected by any of the compounds tested, at a concentration (1 microM) that had a profound estrogenic or antiestrogenic action in ER-positive cell lines. The relative binding affinity of the compounds was determined using rat uterine ER and was found to be consistent with the observed potencies in vitro. The compounds found to be antiestrogens in vitro were antiestrogenic against estradiol (0.08 micrograms daily) in the 3-day immature rat uterine weight test. All compounds were partial agonists in vivo. In general, the estrogenic and antiestrogenic results obtained in vivo were consistent with the potency estimates obtained with the breast cancer cells in vitro. The results of this extensive structure-activity relationship study demonstrate that the substitution for 4-hydroxytamoxifen appears to be optimal to produce a potent antiestrogen; all other substitutions produced either estrogenic compounds or less potent antiestrogens. The hydroxyl group appears to be critical to locate the alkyl aminoethoxy side chain in the correct position in the steroid-binding site to block estrogen action. Novel antiestrogens were identified that could have been predicted based upon earlier drug-receptor models for the ER.

UI MeSH Term Description Entries
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004965 Estrogen Antagonists Compounds which inhibit or antagonize the action or biosynthesis of estrogenic compounds. Estradiol Antagonists,Antagonists, Estradiol,Antagonists, Estrogen
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006878 Hydroxides Inorganic compounds that contain the OH- group.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

C S Murphy, and C J Parker, and R McCague, and V C Jordan
January 2009, Chemistry (Weinheim an der Bergstrasse, Germany),
C S Murphy, and C J Parker, and R McCague, and V C Jordan
December 1998, Yao xue xue bao = Acta pharmaceutica Sinica,
C S Murphy, and C J Parker, and R McCague, and V C Jordan
January 2001, Bioorganic & medicinal chemistry letters,
C S Murphy, and C J Parker, and R McCague, and V C Jordan
August 1987, Biochimie,
C S Murphy, and C J Parker, and R McCague, and V C Jordan
April 1989, Bollettino della Societa italiana di biologia sperimentale,
C S Murphy, and C J Parker, and R McCague, and V C Jordan
August 2013, Molecules (Basel, Switzerland),
C S Murphy, and C J Parker, and R McCague, and V C Jordan
January 2022, Medicinal chemistry (Shariqah (United Arab Emirates)),
C S Murphy, and C J Parker, and R McCague, and V C Jordan
October 2012, ACS medicinal chemistry letters,
C S Murphy, and C J Parker, and R McCague, and V C Jordan
December 1982, Journal of medicinal chemistry,
Copied contents to your clipboard!