Regulation of photoreceptor gene expression by the retinal homeobox (Rx) gene product. 2010

Yi Pan, and Reyna I Martinez-De Luna, and Chih-Hong Lou, and Srivamsi Nekkalapudi, and Lisa E Kelly, and Amy K Sater, and Heithem M El-Hodiri
Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.

The retinal homeobox (Rx) gene product is essential for eye development. However little is known about its molecular function. It has been demonstrated that Rx binds to photoreceptor conserved element (PCE-1), a highly conserved element found in the promoter region of photoreceptor-specific genes such as rhodopsin and red cone opsin. We verify that Rx is co-expressed with rhodopsin and red cone opsin in maturing photoreceptors and demonstrate that Rx binds to the rhodopsin and red cone opsin promoters in vivo. We also find that Rx can cooperate with the Xenopus analogs of Crx and Nrl, otx5b and XLMaf (respectively), to activate a Xenopus opsin promoter-dependent reporter. Finally, we demonstrate that reduction of Rx expression in tadpoles results in decreases in expression of several PCE-1 containing photoreceptor genes, abnormal photoreceptor morphology, and impaired vision. Our data suggests that Rx, in combination with other transcription factors, is necessary for normal photoreceptor gene expression, maintenance, and function. This establishes a direct role for Rx in regulation of genes expressed in a differentiated cell type.

UI MeSH Term Description Entries
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D005136 Eye Proteins PROTEINS derived from TISSUES of the EYE. Proteins, Eye
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012172 Retinaldehyde A diterpene derived from the carotenoid VITAMIN A which functions as the active component of the visual cycle. It is the prosthetic group of RHODOPSIN (i.e., covalently bonded to ROD OPSIN as 11-cis-retinal). When stimulated by visible light, rhodopsin transforms this cis-isomer of retinal to the trans-isomer (11-trans-retinal). This transformation straightens-out the bend of the retinal molecule and causes a change in the shape of rhodopsin triggering the visual process. A series of energy-requiring enzyme-catalyzed reactions convert the 11-trans-retinal back to the cis-isomer. 11-trans-Retinal,3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-Nonatetraenal,Axerophthal,Retinal,Retinene,Retinyl Aldehydde,Vitamin A Aldehyde,all-trans-Retinal,11-cis-Retinal,11 cis Retinal,11 trans Retinal,Aldehydde, Retinyl,Aldehyde, Vitamin A,all trans Retinal
D012243 Rhodopsin A purplish-red, light-sensitive pigment found in RETINAL ROD CELLS of most vertebrates. It is a complex consisting of a molecule of ROD OPSIN and a molecule of 11-cis retinal (RETINALDEHYDE). Rhodopsin exhibits peak absorption wavelength at about 500 nm. Visual Purple
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D017299 Rod Opsins Photosensitive proteins expressed in the ROD PHOTORECEPTOR CELLS. They are the protein components of rod photoreceptor pigments such as RHODOPSIN. Rod-Opsin,Opsins, Rod,Rod Opsin
D018398 Homeodomain Proteins Proteins encoded by homeobox genes (GENES, HOMEOBOX) that exhibit structural similarity to certain prokaryotic and eukaryotic DNA-binding proteins. Homeodomain proteins are involved in the control of gene expression during morphogenesis and development (GENE EXPRESSION REGULATION, DEVELOPMENTAL). Homeo Domain Protein,Homeobox Protein,Homeobox Proteins,Homeodomain Protein,Homeoprotein,Homeoproteins,Homeotic Protein,Homeo Domain Proteins,Homeotic Proteins,Domain Protein, Homeo,Protein, Homeo Domain,Protein, Homeobox,Protein, Homeodomain,Protein, Homeotic,Proteins, Homeo Domain,Proteins, Homeobox,Proteins, Homeodomain,Proteins, Homeotic
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic

Related Publications

Yi Pan, and Reyna I Martinez-De Luna, and Chih-Hong Lou, and Srivamsi Nekkalapudi, and Lisa E Kelly, and Amy K Sater, and Heithem M El-Hodiri
January 2008, The International journal of developmental biology,
Yi Pan, and Reyna I Martinez-De Luna, and Chih-Hong Lou, and Srivamsi Nekkalapudi, and Lisa E Kelly, and Amy K Sater, and Heithem M El-Hodiri
October 2006, Investigative ophthalmology & visual science,
Yi Pan, and Reyna I Martinez-De Luna, and Chih-Hong Lou, and Srivamsi Nekkalapudi, and Lisa E Kelly, and Amy K Sater, and Heithem M El-Hodiri
May 2011, Developmental biology,
Yi Pan, and Reyna I Martinez-De Luna, and Chih-Hong Lou, and Srivamsi Nekkalapudi, and Lisa E Kelly, and Amy K Sater, and Heithem M El-Hodiri
May 2004, Molecular and cellular biology,
Yi Pan, and Reyna I Martinez-De Luna, and Chih-Hong Lou, and Srivamsi Nekkalapudi, and Lisa E Kelly, and Amy K Sater, and Heithem M El-Hodiri
May 2004, Human molecular genetics,
Yi Pan, and Reyna I Martinez-De Luna, and Chih-Hong Lou, and Srivamsi Nekkalapudi, and Lisa E Kelly, and Amy K Sater, and Heithem M El-Hodiri
February 2000, Cellular and molecular life sciences : CMLS,
Yi Pan, and Reyna I Martinez-De Luna, and Chih-Hong Lou, and Srivamsi Nekkalapudi, and Lisa E Kelly, and Amy K Sater, and Heithem M El-Hodiri
June 2018, Mechanisms of development,
Yi Pan, and Reyna I Martinez-De Luna, and Chih-Hong Lou, and Srivamsi Nekkalapudi, and Lisa E Kelly, and Amy K Sater, and Heithem M El-Hodiri
December 2012, Development (Cambridge, England),
Yi Pan, and Reyna I Martinez-De Luna, and Chih-Hong Lou, and Srivamsi Nekkalapudi, and Lisa E Kelly, and Amy K Sater, and Heithem M El-Hodiri
December 2003, Nature neuroscience,
Yi Pan, and Reyna I Martinez-De Luna, and Chih-Hong Lou, and Srivamsi Nekkalapudi, and Lisa E Kelly, and Amy K Sater, and Heithem M El-Hodiri
November 2010, Gene,
Copied contents to your clipboard!