Locations of the three primary binding sites for long-chain fatty acids on bovine serum albumin. 1991

J A Hamilton, and S Era, and S P Bhamidipati, and R G Reed
Department of Biophysics, Houseman Medical Research Center, Boston University School of Medicine, MA 02118-2394.

Binding of 13C-enriched oleic acid to bovine serum albumin and to three large proteolytic fragments of albumin--two complementary fragments corresponding to the two halves of albumin and one fragment corresponding to the carboxyl-terminal domain--yielded unique patterns of NMR resonances (chemical shifts and relative intensities) that were used to identify the locations of binding of the first 5 mol of oleic acid to the multidomain albumin molecule. The first 3 mol of oleic acid added to intact albumin generated three distinct NMR resonances as a result of simultaneous binding of oleic acid to three heterogeneous sites (primary sites). Two of these resonances were seen upon addition of 1 or 2 mol of oleic acid to fragments representing either the carboxyl-terminal half (residues 307-582) or the carboxyl-terminal domain (residues 377-582); the third resonance was seen upon addition of 1 mol of oleic acid to the fragment representing the amino-terminal half (residues 1-306). The resonance patterns for the fourth and fifth moles of oleic acid added to albumin (secondary sites) could not be duplicated by addition of more oleic acid to individual fragments. These resonance patterns were generated, however, when the two complementary fragments were mixed in equimolar proportions to form an albumin-like complex with a reconstituted middle domain. Thus, two primary fatty acid binding sites are assigned to the carboxyl-terminal domain, one primary site is assigned to the amino-terminal half, and the secondary sites are assigned to the middle domain. This distribution suggests albumin to be a less symmetrical binding molecule than theoretical models predict. This work also demonstrates the power of NMR for the study of microenvironments of individual fatty acid binding sites in specific domains.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009829 Oleic Acids A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon. Octadecenoic Acids,Acids, Octadecenoic,Acids, Oleic
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D005583 Fourier Analysis Analysis based on the mathematical function first formulated by Jean-Baptiste-Joseph Fourier in 1807. The function, known as the Fourier transform, describes the sinusoidal pattern of any fluctuating pattern in the physical world in terms of its amplitude and its phase. It has broad applications in biomedicine, e.g., analysis of the x-ray crystallography data pivotal in identifying the double helical nature of DNA and in analysis of other molecules, including viruses, and the modified back-projection algorithm universally used in computerized tomography imaging, etc. (From Segen, The Dictionary of Modern Medicine, 1992) Fourier Series,Fourier Transform,Analysis, Cyclic,Analysis, Fourier,Cyclic Analysis,Analyses, Cyclic,Cyclic Analyses,Series, Fourier,Transform, Fourier
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012710 Serum Albumin, Bovine Serum albumin from cows, commonly used in in vitro biological studies. (From Stedman, 25th ed) Fetal Bovine Serum,Fetal Calf Serum,Albumin Bovine,Bovine Albumin,Bovine Serum Albumin,Albumin, Bovine,Albumin, Bovine Serum,Bovine Serum, Fetal,Bovine, Albumin,Calf Serum, Fetal,Serum, Fetal Bovine,Serum, Fetal Calf
D019301 Oleic Acid An unsaturated fatty acid that is the most widely distributed and abundant fatty acid in nature. It is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. (Stedman, 26th ed) 9-Octadecenoic Acid,Oleate,cis-9-Octadecenoic Acid,9 Octadecenoic Acid,cis 9 Octadecenoic Acid

Related Publications

J A Hamilton, and S Era, and S P Bhamidipati, and R G Reed
January 1969, Journal of lipid research,
J A Hamilton, and S Era, and S P Bhamidipati, and R G Reed
November 1976, Biochemical pharmacology,
J A Hamilton, and S Era, and S P Bhamidipati, and R G Reed
November 1986, The Journal of biological chemistry,
J A Hamilton, and S Era, and S P Bhamidipati, and R G Reed
October 1957, Clinica chimica acta; international journal of clinical chemistry,
J A Hamilton, and S Era, and S P Bhamidipati, and R G Reed
June 1991, The Biochemical journal,
J A Hamilton, and S Era, and S P Bhamidipati, and R G Reed
August 1999, Biochimica et biophysica acta,
J A Hamilton, and S Era, and S P Bhamidipati, and R G Reed
April 1968, Biochemistry,
J A Hamilton, and S Era, and S P Bhamidipati, and R G Reed
April 1982, The Biochemical journal,
J A Hamilton, and S Era, and S P Bhamidipati, and R G Reed
November 1977, Molecular pharmacology,
Copied contents to your clipboard!