Differential importance of highly conserved residues in UL24 for herpes simplex virus 1 replication in vivo and reactivation. 2010

Gabriel André Leiva-Torres, and Pierre-Alexandre Rochette, and Angela Pearson
INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Quebec, Canada.

The UL24 gene of herpes simplex virus 1 (HSV-1) is widely conserved among all subfamilies of the Herpesviridae. It is one of only four HSV-1 genes for which mutations have been mapped that confer a syncytial plaque phenotype. In a mouse model of infection, UL24-deficient viruses exhibit reduced titres, particularly in neurons, and an apparent defect in reactivation from latency. There are several highly conserved residues in UL24; however, their importance in the role of UL24 in vivo is unknown. In this study, we compared virus strains with substitution mutations corresponding to the PD-(D/E)XK endonuclease motif of UL24 (vUL24-E99A/K101A) or a substitution of another highly conserved residue (vUL24-G121A). Both mutant viruses cause the formation of syncytial plaques at 39 degrees C; however, we found that the viruses differed dramatically when tested in a mouse model of infection. vUL24-E99A/K101A exhibited titres in the eye that were 10-fold lower than those of the wild-type virus KOS, and titres in trigeminal ganglia (TG) that were more than 2 log10 lower. Clinical signs were barely detectable with vUL24-E99A/K101A. Furthermore, the percentage of TG from which virus reactivated was also significantly lower for this mutant than for KOS. In contrast, vUL24-G121A behaved similarly to the wild-type virus in mice. These results are consistent with the endonuclease motif being important for the role of UL24 in vivo and also imply that the UL24 temperature-dependent syncytial plaque phenotype can be separated genetically from several in vivo phenotypes.

UI MeSH Term Description Entries
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005123 Eye The organ of sight constituting a pair of globular organs made up of a three-layered roughly spherical structure specialized for receiving and responding to light. Eyes
D006561 Herpes Simplex A group of acute infections caused by herpes simplex virus type 1 or type 2 that is characterized by the development of one or more small fluid-filled vesicles with a raised erythematous base on the skin or mucous membrane. It occurs as a primary infection or recurs due to a reactivation of a latent infection. (Dorland, 27th ed.) Herpes Simplex Virus Infection
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012668 Trigeminal Ganglion The semilunar-shaped ganglion containing the cells of origin of most of the sensory fibers of the trigeminal nerve. It is situated within the dural cleft on the cerebral surface of the petrous portion of the temporal bone and gives off the ophthalmic, maxillary, and part of the mandibular nerves. Gasserian Ganglion,Semilunar Ganglion,Gasser's Ganglion,Trigeminal Ganglia,Ganglia, Trigeminal,Ganglion, Gasser's,Ganglion, Gasserian,Ganglion, Semilunar,Ganglion, Trigeminal,Gasser Ganglion,Gassers Ganglion,Semilunar Ganglions,Trigeminal Ganglias,Trigeminal Ganglions
D012720 Severity of Illness Index Levels within a diagnostic group which are established by various measurement criteria applied to the seriousness of a patient's disorder. Illness Index Severities,Illness Index Severity
D014709 Vero Cells A CELL LINE derived from the kidney of the African green (vervet) monkey, (CHLOROCEBUS AETHIOPS) used primarily in virus replication studies and plaque assays. Cell, Vero,Cells, Vero,Vero Cell
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D014775 Virus Activation The mechanism by which latent viruses, such as genetically transmitted tumor viruses (PROVIRUSES) or PROPHAGES of lysogenic bacteria, are induced to replicate and then released as infectious viruses. It may be effected by various endogenous and exogenous stimuli, including B-cell LIPOPOLYSACCHARIDES, glucocorticoid hormones, halogenated pyrimidines, IONIZING RADIATION, ultraviolet light, and superinfecting viruses. Prophage Excision,Prophage Induction,Virus Induction,Viral Activation,Activation, Viral,Activation, Virus,Activations, Viral,Activations, Virus,Excision, Prophage,Excisions, Prophage,Induction, Prophage,Induction, Virus,Inductions, Prophage,Inductions, Virus,Prophage Excisions,Prophage Inductions,Viral Activations,Virus Activations,Virus Inductions

Related Publications

Gabriel André Leiva-Torres, and Pierre-Alexandre Rochette, and Angela Pearson
January 2010, Journal of virology,
Gabriel André Leiva-Torres, and Pierre-Alexandre Rochette, and Angela Pearson
April 1996, Virology,
Gabriel André Leiva-Torres, and Pierre-Alexandre Rochette, and Angela Pearson
March 1998, Virology,
Gabriel André Leiva-Torres, and Pierre-Alexandre Rochette, and Angela Pearson
January 2016, Antiviral therapy,
Gabriel André Leiva-Torres, and Pierre-Alexandre Rochette, and Angela Pearson
July 2007, Virology,
Gabriel André Leiva-Torres, and Pierre-Alexandre Rochette, and Angela Pearson
August 1996, Journal of virology,
Gabriel André Leiva-Torres, and Pierre-Alexandre Rochette, and Angela Pearson
January 2021, Journal of virology,
Gabriel André Leiva-Torres, and Pierre-Alexandre Rochette, and Angela Pearson
January 1990, Virology,
Gabriel André Leiva-Torres, and Pierre-Alexandre Rochette, and Angela Pearson
December 2020, Viruses,
Gabriel André Leiva-Torres, and Pierre-Alexandre Rochette, and Angela Pearson
January 2015, Epilepsy & behavior case reports,
Copied contents to your clipboard!