Mitochondrial Ca2+ activates a cation current in Aplysia bag cell neurons. 2010

Charlene M Hickey, and Julia E Geiger, and Chris J Groten, and Neil S Magoski
Queen's University, Department of Physiology, Kingston, ON K7L 3N6, Canada.

Ion channels may be gated by Ca(2+) entering from the extracellular space or released from intracellular stores--typically the endoplasmic reticulum. The present study examines how Ca(2+) impacts ion channels in the bag cell neurons of Aplysia californica. These neuroendocrine cells trigger ovulation through an afterdischarge involving Ca(2+) influx from Ca(2+) channels and Ca(2+) release from both the mitochondria and endoplasmic reticulum. Liberating mitochondrial Ca(2+) with the protonophore, carbonyl cyanide-4-trifluoromethoxyphenyl-hydrazone (FCCP), depolarized bag cell neurons, whereas depleting endoplasmic reticulum Ca(2+) with the Ca(2+)-ATPase inhibitor, cyclopiazonic acid, did not. In a concentration-dependent manner, FCCP elicited an inward current associated with an increase in conductance and a linear current/voltage relationship that reversed near -40 mV. The reversal potential was unaffected by changing intracellular Cl(-), but left-shifted when extracellular Ca(2+) was removed and right-shifted when intracellular K(+) was decreased. Strong buffering of intracellular Ca(2+) decreased the current, although the response was not altered by blocking Ca(2+)-dependent proteases. Furthermore, fura imaging demonstrated that FCCP elevated intracellular Ca(2+) with a time course similar to the current itself. Inhibiting either the V-type H(+)-ATPase or the ATP synthetase failed to produce a current, ruling out acidic Ca(2+) stores or disruption of ATP production as mechanisms for the FCCP response. Similarly, any involvement of reactive oxygen species potentially produced by mitochondrial depolarization was mitigated by the fact that dialysis with xanthine/xanthine oxidase did not evoke an inward current. However, both the FCCP-induced current and Ca(2+) elevation were diminished by disabling the mitochondrial permeability transition pore with the alkylating agent, N-ethylmaleimide. The data suggest that mitochondrial Ca(2+) gates a voltage-independent, nonselective cation current with the potential to drive the afterdischarge and contribute to reproduction. Employing Ca(2+) from mitochondria, rather than the more common endoplasmic reticulum, represents a diversification of the mechanisms that influence neuronal activity.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009532 Nickel A trace element with the atomic symbol Ni, atomic number 28, and atomic weight 58.69. It is a cofactor of the enzyme UREASE.
D010060 Ovulation The discharge of an OVUM from a rupturing follicle in the OVARY. Ovulations
D002259 Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone A proton ionophore that is commonly used as an uncoupling agent in biochemical studies. Carbonyl Cyanide para-Trifluoromethoxyphenylhydrazone,FCCP,(4-(Trifluoromethoxy)phenyl)hydrazonopropanedinitrile,Carbonyl Cyanide p Trifluoromethoxyphenylhydrazone,Carbonyl Cyanide para Trifluoromethoxyphenylhydrazone,Cyanide p-Trifluoromethoxyphenylhydrazone, Carbonyl,Cyanide para-Trifluoromethoxyphenylhydrazone, Carbonyl,p-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide,para-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D005260 Female Females

Related Publications

Charlene M Hickey, and Julia E Geiger, and Chris J Groten, and Neil S Magoski
May 2023, Journal of neurophysiology,
Charlene M Hickey, and Julia E Geiger, and Chris J Groten, and Neil S Magoski
December 2009, Journal of neurophysiology,
Charlene M Hickey, and Julia E Geiger, and Chris J Groten, and Neil S Magoski
February 2015, Journal of neurophysiology,
Charlene M Hickey, and Julia E Geiger, and Chris J Groten, and Neil S Magoski
July 2008, Journal of neurophysiology,
Charlene M Hickey, and Julia E Geiger, and Chris J Groten, and Neil S Magoski
September 2006, The Journal of physiology,
Charlene M Hickey, and Julia E Geiger, and Chris J Groten, and Neil S Magoski
January 2000, The Journal of physiology,
Charlene M Hickey, and Julia E Geiger, and Chris J Groten, and Neil S Magoski
March 2007, Journal of neurophysiology,
Charlene M Hickey, and Julia E Geiger, and Chris J Groten, and Neil S Magoski
May 2012, Journal of neurophysiology,
Charlene M Hickey, and Julia E Geiger, and Chris J Groten, and Neil S Magoski
March 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Charlene M Hickey, and Julia E Geiger, and Chris J Groten, and Neil S Magoski
December 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!