Dietary feeding of grape seed extract prevents intestinal tumorigenesis in APCmin/+ mice. 2010

Balaiya Velmurugan, and Rana P Singh, and Nidhi Kaul, and Rajesh Agarwal, and Chapla Agarwal
Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA.

Chemopreventive effects and associated mechanisms of grape seed extract (GSE) against intestinal/colon cancer development are largely unknown. Herein, we investigated GSE efficacy against intestinal tumorigenesis in APC(min/+) mice. Female APC(min/+) mice were fed control or 0.5% GSE (wt/wt) mixed AIN-76A diet for 6 weeks. At the end of the experiment, GSE feeding decreased the total number of intestinal polyps by 40%. The decrease in polyp formation in the small intestine was 42%, which was mostly in its middle (51%) and distal (49%) portions compared with the proximal one. GSE also decreased polyp growth where the number of polyps of 1 to 2 mm in size decreased by 42% and greater than 2 mm in size by 71%, without any significant change in polyps less than 1 mm in size. Immunohistochemical analyses of small intestinal tissue samples revealed a decrease (80%-86%) in cell proliferation and an increase (four- to eight-fold) in apoptosis. GSE feeding also showed decreased protein levels of cyclooxygenase-2 (COX-2) (56%-64%), inducible nitric oxide synthase (iNOS) (58%-60%), and beta-catenin (43%-59%) but an increased Cip1/p21-positive cells (1.9- to 2.6-fold). GSE also decreased cyclin D1 and c-Myc protein levels in small intestine. Together, these findings show the chemopreventive potential of GSE against intestinal polyp formation and growth in APC(min/+) mice, which was accompanied with reduced cell proliferation and increased apoptosis together with down-regulation in COX-2, iNOS, beta-catenin, cyclin D1, and c-Myc expression, but increased Cip1/p21. In conclusion, the present study suggests potential usefulness of GSE for the chemoprevention of human intestinal/colorectal cancer.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007417 Intestinal Polyps Discrete abnormal tissue masses that protrude into the lumen of the INTESTINE. A polyp is attached to the intestinal wall either by a stalk, pedunculus, or by a broad base. Intestinal Polyp,Polyp, Intestinal,Polyps, Intestinal
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D010936 Plant Extracts Concentrated pharmaceutical preparations of plants obtained by removing active constituents with a suitable solvent, which is evaporated away, and adjusting the residue to a prescribed standard. Herbal Medicines,Plant Extract,Extract, Plant,Extracts, Plant,Medicines, Herbal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016271 Proto-Oncogene Proteins c-myc Basic helix-loop-helix transcription factors encoded by the c-myc genes. They are normally involved in nucleic acid metabolism and in mediating the cellular response to growth factors. Elevated and deregulated (constitutive) expression of c-myc proteins can cause tumorigenesis. L-myc Proteins,N-myc Proteins,c-myc Proteins,myc Proto-Oncogene Proteins,p62(c-myc),Proto-Oncogene Products c-myc,Proto-Oncogene Proteins myc,myc Proto-Oncogene Product p62,p62 c-myc,L myc Proteins,N myc Proteins,Proteins myc, Proto-Oncogene,Proto Oncogene Products c myc,Proto Oncogene Proteins c myc,Proto Oncogene Proteins myc,Proto-Oncogene Proteins, myc,c myc Proteins,myc Proto Oncogene Product p62,myc Proto Oncogene Proteins,myc, Proto-Oncogene Proteins,p62 c myc
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D050759 Cyclin-Dependent Kinase Inhibitor p21 A cyclin-dependent kinase inhibitor that mediates TUMOR SUPPRESSOR PROTEIN P53-dependent CELL CYCLE arrest. p21 interacts with a range of CYCLIN-DEPENDENT KINASES and associates with PROLIFERATING CELL NUCLEAR ANTIGEN and CASPASE 3. CDK2-Associated Protein 20 kDa,CDKN1 Protein,CDKN1A Protein,Cdk-Interacting Protein 1,Cdk2 Inhibitor Protein,Cell Cycle Regulator p21,Cyclin Kinase Inhibitor p21,Cyclin-Dependent Kinase Inhibitor 1A Protein,Senescent Cell-Derived Inhibitor Protein 1,p21 Cell Cycle Regulator,p21 Cyclin Kinase Inhibitor,CDK2 Associated Protein 20 kDa,Cdk Interacting Protein 1,Cyclin Dependent Kinase Inhibitor 1A Protein,Cyclin Dependent Kinase Inhibitor p21,Senescent Cell Derived Inhibitor Protein 1

Related Publications

Balaiya Velmurugan, and Rana P Singh, and Nidhi Kaul, and Rajesh Agarwal, and Chapla Agarwal
May 2024, Molecular nutrition & food research,
Balaiya Velmurugan, and Rana P Singh, and Nidhi Kaul, and Rajesh Agarwal, and Chapla Agarwal
September 2016, Oncotarget,
Balaiya Velmurugan, and Rana P Singh, and Nidhi Kaul, and Rajesh Agarwal, and Chapla Agarwal
October 2007, Gut,
Balaiya Velmurugan, and Rana P Singh, and Nidhi Kaul, and Rajesh Agarwal, and Chapla Agarwal
May 2014, BMC complementary and alternative medicine,
Balaiya Velmurugan, and Rana P Singh, and Nidhi Kaul, and Rajesh Agarwal, and Chapla Agarwal
November 2010, Phytotherapy research : PTR,
Balaiya Velmurugan, and Rana P Singh, and Nidhi Kaul, and Rajesh Agarwal, and Chapla Agarwal
April 2018, Journal of food science,
Balaiya Velmurugan, and Rana P Singh, and Nidhi Kaul, and Rajesh Agarwal, and Chapla Agarwal
November 2006, International journal of cancer,
Balaiya Velmurugan, and Rana P Singh, and Nidhi Kaul, and Rajesh Agarwal, and Chapla Agarwal
December 2004, Cancer research,
Balaiya Velmurugan, and Rana P Singh, and Nidhi Kaul, and Rajesh Agarwal, and Chapla Agarwal
October 2000, Cancer research,
Balaiya Velmurugan, and Rana P Singh, and Nidhi Kaul, and Rajesh Agarwal, and Chapla Agarwal
November 2017, Oncotarget,
Copied contents to your clipboard!