Steroid hormone receptors. 1991

E V Jensen

In the three decades since the original discovery of receptors for steroid hormones, much has been learned about the biochemical processes by which these regulatory agents exert their effects in target tissues. The intracellular receptor proteins are potential transcription factors, needed for optimal gene expression in hormone-dependent cells. They are present in an inactive form until association with the hormone converts them to a functional state that can react with target genes. Transformation of the receptor protein to the nuclear binding form appears to involve the removal of both macromolecular and micromolecular factors that act to keep the receptor form reacting with DNA. Much of the native receptor is present in the nucleus, loosely bound and readily extractable, but for some and possibly all steroid hormones, some receptor is in the cytoplasm, perhaps in equilibrium with a nuclear pool. Methods have been developed for the stabilization, purification, and characterization of receptor proteins, and through cloning and sequencing of their cDNAs, primary structures for these receptors are now known. This has led to the recognition of structural similarities among the family of receptors for the different steroid hormones and to the identification of regions in the protein molecule responsible for the various aspects of their function. Monoclonal antibodies recognizing specific molecular domains are available for most receptors. Despite the knowledge that has been acquired, many important questions remain unsolved. How does association with the steroid remove factors keeping the receptor protein in its native state, and how does binding of the transformed receptor to the response element in the promoter region enhance gene transcription? Once it has converted the receptor to the nuclear binding state, is there a further role for the steroid in modulating transcription? Still not entirely clear is the involvement of phosphorylation and/or dephosphorylation in hormone binding, receptor transformation, and transcriptional activation. Less vital to basic understanding but important in the overall picture is whether the native receptors for gonadal hormones are entirely confined to the nucleus or whether there is an intracellular distribution equilibrium. With the effort now being devoted to this field, and with the application of new experimental techniques, especially those of molecular biology, our understanding of receptor function is progressing rapidly. The precise mechanism of steroid hormone action should soon be completely established.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011987 Receptors, Steroid Proteins found usually in the cytoplasm or nucleus that specifically bind steroid hormones and trigger changes influencing the behavior of cells. The steroid receptor-steroid hormone complex regulates the transcription of specific genes. Corticosteroid Receptors,Receptors, Corticosteroid,Steroid Receptors,Corticosteroid Receptor,Receptors, Steroids,Steroid Receptor,Receptor, Corticosteroid,Receptor, Steroid,Steroids Receptors
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E V Jensen
January 1975, Vitamins and hormones,
E V Jensen
January 1980, Exposes annuels de biochimie medicale,
E V Jensen
May 1994, La Revue du praticien,
E V Jensen
September 1993, The Journal of laboratory and clinical medicine,
E V Jensen
June 1984, Archives of disease in childhood,
E V Jensen
January 1977, Psychoneuroendocrinology,
E V Jensen
January 1980, Journal of steroid biochemistry,
E V Jensen
January 2000, Human reproduction update,
Copied contents to your clipboard!