Kinetics of synaptic transfer from receptors to ganglion cells in turtle retina. 1977

D A Baylor, and R Fettiplace

1. Synaptic transfer between the retinal input and output was studied in turtle eyecups by injecting rectangular current pulses into a single cone or rod while recording externally from a ganglion cell.2. When a receptor was activated with weak steps of polarizing current, the probability of obtaining a ganglion cell impulse rose after an S-shaped delay to a peak at about 0.1 sec and then declined. This suggests that the transmission chain behaves like an electrical band-pass filter containing delay and differentiating elements.3. To further characterize the kinetics of excitation in the subthreshold region, the duration and polarity of the polarizing current pulses were varied while determining the magnitude of the threshold current and the delay to the ganglion cell impulses. The results of these experiments were described with linear models which assume that synaptic transfer occurs over a cascade of first-order delay stages and a single differentiating stage.4. The pathways which relay off responses to light from rods and red-sensitive cones were formally similar, but the time scale in the rod path was several times slower. The path carrying off responses from the red-sensitive cones was faster than the on path. These kinetic differences indicate that independent pathways mediate each of the three categories of response and suggest that the kinetics of each path are ;matched' to the input signals generated by light.5. The strength-latency relations for the responses of on-centre ganglion cells to flashes and steps of light were approximately predicted from the description of synaptic transfer developed here and the description of visual transduction in red-sensitive cones from a previous study.6. It is suggested that the retinal paths have kinetics which might be useful in transmitting light-evoked signals whilst attenuating noise present near the input.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D014426 Turtles Any reptile including tortoises, fresh water, and marine species of the order Testudines with a body encased in a bony or cartilaginous shell consisting of a top (carapace) and a bottom (plastron) derived from the ribs. Sea Turtles,Terrapins,Tortoises,Sea Turtle,Terrapin,Tortoise,Turtle,Turtle, Sea,Turtles, Sea

Related Publications

D A Baylor, and R Fettiplace
December 1997, The Journal of comparative neurology,
D A Baylor, and R Fettiplace
November 1991, Visual neuroscience,
D A Baylor, and R Fettiplace
January 1993, Visual neuroscience,
D A Baylor, and R Fettiplace
November 1981, The Journal of comparative neurology,
D A Baylor, and R Fettiplace
May 1982, The Journal of physiology,
D A Baylor, and R Fettiplace
March 1981, Proceedings of the Royal Society of London. Series B, Biological sciences,
D A Baylor, and R Fettiplace
September 2006, The Journal of comparative neurology,
Copied contents to your clipboard!