| D008954 |
Models, Biological |
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. |
Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic |
|
| D009420 |
Nervous System |
The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed) |
Nervous Systems,System, Nervous,Systems, Nervous |
|
| D012038 |
Regeneration |
The physiological renewal, repair, or replacement of tissue. |
Endogenous Regeneration,Regeneration, Endogenous,Regenerations |
|
| D002454 |
Cell Differentiation |
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. |
Differentiation, Cell,Cell Differentiations,Differentiations, Cell |
|
| D004447 |
Echinodermata |
A phylum of the most familiar marine invertebrates. Its class Stelleroidea contains two subclasses, the Asteroidea (the STARFISH or sea stars) and the Ophiuroidea (the brittle stars, also called basket stars and serpent stars). There are 1500 described species of STARFISH found throughout the world. The second class, Echinoidea, contains about 950 species of SEA URCHINS, heart urchins, and sand dollars. A third class, Holothuroidea, comprises about 900 echinoderms known as SEA CUCUMBERS. Echinoderms are used extensively in biological research. (From Barnes, Invertebrate Zoology, 5th ed, pp773-826) |
Echinodermatas |
|
| D005075 |
Biological Evolution |
The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. |
Evolution, Biological |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D013234 |
Stem Cells |
Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. |
Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell |
|
| D049109 |
Cell Proliferation |
All of the processes involved in increasing CELL NUMBER including CELL DIVISION. |
Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular |
|
| D019070 |
Cell Lineage |
The developmental history of specific differentiated cell types as traced back to the original STEM CELLS in the embryo. |
Cell Lineages,Lineage, Cell,Lineages, Cell |
|