Cytoplasmic malate levels in maize root tips during K+ ion uptake determined by 13C-NMR spectroscopy. 1991

K Chang, and J K Roberts
Department of Biochemistry, University of California, Riverside 92521.

13C-NMR spectroscopy was used to determine the level of cytoplasmic malate in maize root tips that exhibited different rates of malate synthesis. Intracellular malate was 13C-labeled at carbons 1 and 4 by perfusing root tips with 5 nM H13CO3-. This labeling reflects the activities of phosphoenolpyruvate carboxylase and malate dehydrogenase (production of [4-13C]malate), and fumarase (scrambling of 13C-label between C1 and C4 of malate). In vivo 13C-NMR spectra contained a clearly resolved resonance from cytoplasmic [4-13C]malate, while the resonance from cytoplasmic [1-13C]malate overlapped with others. After 90 min of H13CO3- treatment, 13C-labeling of organic acid pools had reached steady-state. Thereafter, the ratios [13C]malate/[12C + 13C]malate and [1-13C]malate/[4-13C]malate in tissue extracts remained constant; evidence is presented that these ratios were the same for both cytoplasmic and total cellular malate. Hence, the intensity of the cytoplasmic [4-13C]malate signal was proportional to the amount of cytoplasmic malate in root tips. Potassium sulfate stimulate malate synthesis in maize root tips, relative to root tips perfused with HCO3- alone; total cellular malate doubled after approx. 1 h of 5 mM K2SO4-treatment. Cytoplasmic malate increased from approx. 3.5 mM to approx. 7.5 mM within 45 min of the onset of K2SO4-treatment, declining slightly thereafter. The possible effects of these changing cytoplasmic malate concentration on the enzymes involved in malate metabolism are discussed.

UI MeSH Term Description Entries
D008293 Malates Derivatives of malic acid (the structural formula: (COO-)2CH2CHOH), including its salts and esters.
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D003313 Zea mays A plant species of the family POACEAE. It is a tall grass grown for its EDIBLE GRAIN, corn, used as food and animal FODDER. Corn,Indian Corn,Maize,Teosinte,Zea,Corn, Indian
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D013431 Sulfates Inorganic salts of sulfuric acid. Sulfate,Sulfates, Inorganic,Inorganic Sulfates

Related Publications

K Chang, and J K Roberts
July 1994, European journal of biochemistry,
K Chang, and J K Roberts
January 1993, The International journal of biochemistry,
K Chang, and J K Roberts
May 2024, Journal of the American Society for Mass Spectrometry,
K Chang, and J K Roberts
December 2002, Molecular genetics and metabolism,
K Chang, and J K Roberts
July 1991, Biochimica et biophysica acta,
K Chang, and J K Roberts
September 1990, Biochimica et biophysica acta,
Copied contents to your clipboard!