Activation of hormone-sensitive lipase and phosphorylase kinase by purified cyclic GMP-dependent protein kinase. 1977

J C Khoo, and P J Sperry, and G N Gill, and D Steinberg

Cyclic GMP-dependent protein kinase, purified to homogeneity from bovine lung, was shown to activate hormone-sensitive lipase partially purified from chicken adipose tissue. The degree of activation was the same as that effected by cyclic AMP-dependent protein kinase although higher concentrations of the cyclic GMP-dependent enzyme were required (relative activities expressed in terms of histone H2b phosphorylation units). Activation by cyclic AMP-dependent protein kinase was completely blocked by the heat-stable protein kinase inhibitor protein from skeletal muscle but activation by the cyclic GMP enzyme was not inhibited. Lipase fully activated by cyclic AMP-dependent protein kinase showed no further change in activity when treated with cyclic GMP-dependent protein kinase. Lipase activated by cyclic GMP-dependent protein kinase was reversibly deactivated by purified phosphorylase phosphatase (from bovine heart); full activity was restored by reincubation with cyclic GMP and cyclic GMP-dependent protein kinase. Cholesterol esterase activity in the chicken adipose tissue fraction, previously shown to be activated along with the triglyceride lipase by cyclic AMP-dependent protein kinase, was also activated by cyclic GMP-dependent protein kinase. Crude preparations of hormone-sensitive triglyceride lipase from human or rat adipose tissue and cholesterol esterase from rat adrenal were also activated by cyclic GMP-dependent protein kinase. Purified phosphorylase kinase (rabbit skeletal muscle) was also shown to be activated by cyclic GMP-dependent protein kinase. The present results, together with those of other workers on histone phosphorylation, suggest that the substrate specificities of cyclic GMP-dependent and cyclic AMP-dependent protein kinase may be similar. This is discussed in the light of a model recently proposed with regard to the relationship between the subunit structures of the two kinases. The physiologic significance of the findings remains to be established.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010764 Phosphorylase Kinase An enzyme that catalyzes the conversion of ATP and PHOSPHORYLASE B to ADP and PHOSPHORYLASE A. Glycogen Phosphorylase Kinase,Phosphorylase b Kinase,Kinase, Glycogen Phosphorylase,Kinase, Phosphorylase,Kinase, Phosphorylase b,Phosphorylase Kinase, Glycogen,b Kinase, Phosphorylase
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D002787 Sterol Esterase An enzyme that catalyzes the hydrolysis of CHOLESTEROL ESTERS and some other sterol esters, to liberate cholesterol plus a fatty acid anion. Cholesterol Esterase,15-Ketosteryl Oleate Hydrolase,Acylcholesterol Lipase,Cholesterol Ester Hydrolase,Cholesteryl Oleate Hydrolase,Cholesterylester Hydrolase,Hormone-Sensitive Lipase,Lipase A (Lysosomal Acid Cholesterol Esterase),Lipoidal Steroid Esterase,Lysosomal Acid Cholesterol Esterase,Lysosomal Acid Lipase,Steroid Hormone Esterase,Sterol Ester Acylhydrolase,15 Ketosteryl Oleate Hydrolase,Acid Lipase, Lysosomal,Acylhydrolase, Sterol Ester,Esterase, Cholesterol,Esterase, Lipoidal Steroid,Esterase, Steroid Hormone,Esterase, Sterol,Hormone Sensitive Lipase,Hydrolase, 15-Ketosteryl Oleate,Hydrolase, Cholesterol Ester,Hydrolase, Cholesteryl Oleate,Hydrolase, Cholesterylester,Lipase, Acylcholesterol,Lipase, Hormone-Sensitive,Steroid Esterase, Lipoidal
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D006728 Hormones Chemical substances having a specific regulatory effect on the activity of a certain organ or organs. The term was originally applied to substances secreted by various ENDOCRINE GLANDS and transported in the bloodstream to the target organs. It is sometimes extended to include those substances that are not produced by the endocrine glands but that have similar effects. Hormone,Hormone Receptor Agonists,Agonists, Hormone Receptor,Receptor Agonists, Hormone

Related Publications

J C Khoo, and P J Sperry, and G N Gill, and D Steinberg
January 1985, FEBS letters,
J C Khoo, and P J Sperry, and G N Gill, and D Steinberg
September 1971, Biochimica et biophysica acta,
J C Khoo, and P J Sperry, and G N Gill, and D Steinberg
October 1972, Biochemical and biophysical research communications,
J C Khoo, and P J Sperry, and G N Gill, and D Steinberg
December 1983, The Journal of biological chemistry,
J C Khoo, and P J Sperry, and G N Gill, and D Steinberg
December 1970, Biochemical and biophysical research communications,
J C Khoo, and P J Sperry, and G N Gill, and D Steinberg
January 1974, Methods in enzymology,
J C Khoo, and P J Sperry, and G N Gill, and D Steinberg
October 1980, FEBS letters,
J C Khoo, and P J Sperry, and G N Gill, and D Steinberg
February 1981, Proceedings of the National Academy of Sciences of the United States of America,
J C Khoo, and P J Sperry, and G N Gill, and D Steinberg
January 1995, Methods in molecular biology (Clifton, N.J.),
J C Khoo, and P J Sperry, and G N Gill, and D Steinberg
January 1978, Biochemical and biophysical research communications,
Copied contents to your clipboard!