Drug interactions with antiretrovirals and warfarin. 2010

Michelle D Liedtke, and R Chris Rathbun
Department of Pharmacy, University of Oklahoma, Health Sciences Center, College of Pharmacy, 1110 N Stonewall, CPB 206, Oklahoma City, OK 73117, USA. Michelle-liedtke@ouhsc.edu

BACKGROUND Antiretroviral therapy exhibits significant potential to alter the metabolism of other medications. Warfarin is widely used for the management of clotting disorders and is prone to drug-drug interactions that can result in subtherapeutic anticoagulation or over-anticoagulation. METHODS The mechanism and clinical significance of drug-drug interactions between warfarin and individual antiretrovirals are discussed. Literature searches were conducted in August of 2009 using multiple databases including Medline (1950 - 2009), EMBASE (1980 - 2009), International Pharmaceutical Abstracts (1970 - 2009) and the Cochrane Database of Systematic Reviews. The following search terms were utilized: warfarin, HIV, antiretroviral, drug interaction, protease inhibitor (PI), non-nucleoside reverse-transcriptase inhibitor (NNRTI), cytochrome P450 (CYP450), CYP2C9 and individual antiretrovirals by name. The manufacturers of PIs and NNRTIs were also contacted regarding unpublished data. RESULTS Clinicians will gain an understanding of the antiretrovirals that are prone to alter warfarin metabolism and the implications for warfarin dose modification. CONCLUSIONS Metabolic interaction between warfarin and antiretrovirals is likely, particularly if NNRTIs or PIs are included in the antiretroviral regimen. Titration of warfarin dose should be conducted on the basis of close monitoring of the international normalized ratio. Empiric warfarin dose modifications should be considered for individual antiretrovirals.

UI MeSH Term Description Entries
D010597 Pharmacogenetics A branch of genetics which deals with the genetic variability in individual responses to drugs and drug metabolism (BIOTRANSFORMATION). Pharmacogenomics
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014859 Warfarin An anticoagulant that acts by inhibiting the synthesis of vitamin K-dependent coagulation factors. Warfarin is indicated for the prophylaxis and/or treatment of venous thrombosis and its extension, pulmonary embolism, and atrial fibrillation with embolization. It is also used as an adjunct in the prophylaxis of systemic embolism after myocardial infarction. Warfarin is also used as a rodenticide. 4-Hydroxy-3-(3-oxo-1-phenylbutyl)-2H-1-benzopyran-2-one,Aldocumar,Apo-Warfarin,Coumadin,Coumadine,Gen-Warfarin,Marevan,Tedicumar,Warfant,Warfarin Potassium,Warfarin Sodium,Potassium, Warfarin,Sodium, Warfarin
D044966 Anti-Retroviral Agents Agents used to treat RETROVIRIDAE INFECTIONS. Antiretroviral Agent,Antiretroviral Agents,Agent, Antiretroviral,Agents, Anti-Retroviral,Agents, Antiretroviral,Anti Retroviral Agents

Related Publications

Michelle D Liedtke, and R Chris Rathbun
June 2004, Current HIV/AIDS reports,
Michelle D Liedtke, and R Chris Rathbun
June 2000, Current infectious disease reports,
Michelle D Liedtke, and R Chris Rathbun
January 2010, Clinical pharmacokinetics,
Michelle D Liedtke, and R Chris Rathbun
January 2009, Clinical pharmacokinetics,
Michelle D Liedtke, and R Chris Rathbun
September 2020, Revue medicale suisse,
Michelle D Liedtke, and R Chris Rathbun
June 1983, Drugs,
Michelle D Liedtke, and R Chris Rathbun
April 1968, Archives of internal medicine,
Michelle D Liedtke, and R Chris Rathbun
April 1993, The Medical journal of Australia,
Michelle D Liedtke, and R Chris Rathbun
October 1992, The Medical journal of Australia,
Michelle D Liedtke, and R Chris Rathbun
January 2013, Antiviral therapy,
Copied contents to your clipboard!