S-Adenosylmethionine decarboxylase. 2009

Anthony E Pegg
Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA. aep1@psu.edu

S-Adenosylmethionine decarboxylase is a key enzyme for the synthesis of polyamines in mammals, plants and many other species that use aminopropyltransferases for this pathway. It catalyses the formation of S-adenosyl-1-(methylthio)-3-propylamine (decarboxylated S-adenosylmethionine), which is used as the aminopropyl donor. This is the sole function of decarboxylated S-adenosylmethionine. Its content is therefore kept very low and is regulated by variation in the activity of S-adenosylmethionine decarboxylase according to the need for polyamine synthesis. All S-adenosylmethionine decarboxylases have a covalently bound pyruvate prosthetic group, which is essential for the decarboxylation reaction, and have similar structures, although they differ with respect to activation by cations, primary sequence and subunit composition. The present chapter describes these features, the mechanisms for autocatalytic generation of the pyruvate from a proenzyme precursor and for the decarboxylation reaction, and the available inhibitors of this enzyme, which have uses as anticancer and anti-trypanosomal agents. The intricate mechanisms for regulation of mammalian S-adenosylmethionine decarboxylase activity and content are also described.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011073 Polyamines Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. Polyamine
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria

Related Publications

Anthony E Pegg
January 1984, Advances in enzymology and related areas of molecular biology,
Anthony E Pegg
January 1983, Methods in enzymology,
Anthony E Pegg
January 1983, Methods in enzymology,
Anthony E Pegg
April 2007, Biochemical Society transactions,
Anthony E Pegg
October 1975, The Biochemical journal,
Anthony E Pegg
November 1994, Biochemical Society transactions,
Anthony E Pegg
February 2010, Amino acids,
Anthony E Pegg
January 1977, The International journal of biochemistry,
Anthony E Pegg
December 1980, Plant physiology,
Anthony E Pegg
February 1989, The Biochemical journal,
Copied contents to your clipboard!